#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler import time import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO path = "runwayml/stable-diffusion-v1-5" lora_id = "takuma104/lora-test-text-encoder-lora-target" api = HfApi() start_time = time.time() pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.load_lora_weights(lora_id) pipe = pipe.to("cuda") prompt = "a red sks dog" images = pipe(prompt=prompt, num_inference_steps=15, cross_attention_kwargs={"scale": 0.5}, generator=torch.manual_seed(0) ).images for i, image in enumerate(images): file_name = f"aa_{i}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")