#!/usr/bin/env python3 import torch from diffusers import AutoPipelineForText2Image from huggingface_hub import HfApi from pathlib import Path import os from PIL import Image import numpy as np api = HfApi() pipe = AutoPipelineForText2Image.from_pretrained("warp-diffusion/WuerstchenGeneratorPipeline", torch_dtype=torch.float16).to("cuda") prompt = [ "An old destroyed car standing on a cliff in norway, cinematic photography", "Western movie, closeup cinematic photography", "Pink nike shoe commercial, closeup cinematic photography", "Croatia, closeup cinematic photography", "South Tyrol mountains at sunset, closeup cinematic photography", ] images = pipe(prompt, guidance_scale=8.0, width=1024, height=1024).images for i, image in enumerate(images): file_name = f"bb_1_{i}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")