#!/usr/bin/env python3 from diffusers import DiffusionPipeline import torch from pathlib import Path from huggingface_hub import HfApi import os api = HfApi() pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.load_lora_weights("./sd_xl_offset_example-lora_1.0.safetensors") pipe.to(torch_dtype=torch.float16) pipe.to("cuda") torch.manual_seed(0) prompt = "beautiful scenery nature glass bottle landscape, , purple galaxy bottle" negative_prompt = "text, watermark" image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=25).images[0] file_name = f"aaa" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")