#!/usr/bin/env python3 import torch import torch.nn as nn import torch.nn.functional as F class SuperConv(nn.Conv2d): def __init__(self, *args, is_lora=False, **kwargs): super().__init__(*args, **kwargs) self.is_lora = is_lora def forward(self, *args, **kwargs): if self.is_lora: return 3 + super().forward(*args, **kwargs) else: return super().forward(*args, **kwargs) # Define a simple Convolutional Neural Network class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = SuperConv(3, 6, 5) # Assuming input images are RGB, so 3 input channels self.pool = nn.MaxPool2d(2, 2) self.conv2 = SuperConv(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # Create the network net = SimpleCNN() # Initialize weights with dummy values for m in net.modules(): if isinstance(m, nn.Conv2d): nn.init.constant_(m.weight, 0.1) nn.init.constant_(m.bias, 0.1) elif isinstance(m, nn.Linear): nn.init.constant_(m.weight, 0.1) nn.init.constant_(m.bias, 0.1) # Perform inference input = torch.randn(1, 3, 32, 32).to("cuda") net = net.to("cuda") output = net(input) print(output) net = torch.compile(net, mode="reduce-overhead", fullgraph=True) output = net(input) print(output)