--- base_model: meta-llama/Llama-3.2-1B-Instruct datasets: - generator library_name: peft license: llama3.2 tags: - trl - sft - generated_from_trainer - lora model-index: - name: Llama-3.2-1B-Indonesian results: [] language: - id pipeline_tag: text-generation --- # Llama-3.2-1B-Indonesian This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) that has been optimized for Indonesian language understanding and generation.

The fine-tuning process utilized Low-Rank Adaptation (LoRA) to efficiently adapt the model while minimizing computational and storage overhead. This approach enables effective fine-tuning for specific tasks or domains, particularly in the Indonesian language context. ## Training and evaluation data [Ichsan2895/alpaca-gpt4-indonesian](https://huggingface.co/datasets/Ichsan2895/alpaca-gpt4-indonesian) ### Use WIth Transformers ```python import torch from transformers import pipeline model_id = "digo-prayudha/Llama-3.2-1B-Indonesian" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "user", "content": "Tentukan subjek dari kalimat berikut: 'Film tersebut dirilis kemarin'."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 6 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ![Train Loss] ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 2.16.1 - Tokenizers 0.20.1