--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 83c2ff06-3778-41df-a6de-a8582abdaca3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6700e7210e3f6191_train_data.json ds_type: json format: custom path: /workspace/input_data/6700e7210e3f6191_train_data.json type: field_input: intent field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik1987/83c2ff06-3778-41df-a6de-a8582abdaca3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/6700e7210e3f6191_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2028 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer torch_dtype: bfloat16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 83c2ff06-3778-41df-a6de-a8582abdaca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 83c2ff06-3778-41df-a6de-a8582abdaca3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 83c2ff06-3778-41df-a6de-a8582abdaca3 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.8203 | 0.0003 | 1 | 1.4616 | | 5.7421 | 0.0017 | 5 | 1.4401 | | 4.9761 | 0.0033 | 10 | 1.2095 | | 4.6298 | 0.0050 | 15 | 0.9935 | | 3.6041 | 0.0066 | 20 | 0.8895 | | 3.4775 | 0.0083 | 25 | 0.8444 | | 2.8792 | 0.0099 | 30 | 0.8117 | | 3.3873 | 0.0116 | 35 | 0.7912 | | 3.1162 | 0.0132 | 40 | 0.7798 | | 3.3973 | 0.0149 | 45 | 0.7749 | | 2.9933 | 0.0165 | 50 | 0.7738 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1