dimitribarbot
commited on
Commit
β’
e677eaf
1
Parent(s):
ec7f956
Add README
Browse files- README.md +159 -2
- custom_dw_pose.png +0 -0
- dwpose_1.png β images/dwpose_1.png +0 -0
- dwpose_2.png β images/dwpose_2.png +0 -0
- dwpose_image_1.png β images/dwpose_image_1.png +0 -0
- dwpose_image_2.png β images/dwpose_image_2.png +0 -0
- pose_image_1.png β images/pose_image_1.png +0 -0
- pose_image_2.png β images/pose_image_2.png +0 -0
- pose.png +0 -0
README.md
CHANGED
@@ -10,7 +10,164 @@ tags:
|
|
10 |
- diffusers-training
|
11 |
---
|
12 |
|
13 |
-
# SDXL
|
14 |
|
15 |
-
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- diffusers-training
|
11 |
---
|
12 |
|
13 |
+
# SDXL ControlNet: DWPose
|
14 |
|
15 |
+
Here are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with [DWPose](https://github.com/IDEA-Research/DWPose) conditioning.
|
16 |
|
17 |
+
### Using in 𧨠diffusers
|
18 |
+
|
19 |
+
First, install all the libraries:
|
20 |
+
|
21 |
+
```bash
|
22 |
+
pip install -q easy-dwpose transformers accelerate
|
23 |
+
pip install -q git+https://github.com/huggingface/diffusers
|
24 |
+
```
|
25 |
+
|
26 |
+
#### Example 1
|
27 |
+
|
28 |
+
To generate a realistic DJ with the following pose:
|
29 |
+
|
30 |
+
![Pose Image 1](./images/pose_image_1.png)
|
31 |
+
|
32 |
+
Run the following code:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
36 |
+
import torch
|
37 |
+
from diffusers.utils import load_image
|
38 |
+
|
39 |
+
from easy_dwpose import DWposeDetector
|
40 |
+
|
41 |
+
|
42 |
+
pose_image = load_image("./pose_image_1.png")
|
43 |
+
|
44 |
+
# Load detector
|
45 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
46 |
+
dwpose = DWposeDetector(device=device)
|
47 |
+
|
48 |
+
# Compute DWpose conditioning image.
|
49 |
+
skeleton = dwpose(
|
50 |
+
pose_image,
|
51 |
+
detect_resolution=pose_image.width,
|
52 |
+
output_type="pil",
|
53 |
+
include_hands=True,
|
54 |
+
include_face=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Initialize ControlNet pipeline.
|
58 |
+
controlnet = ControlNetModel.from_pretrained(
|
59 |
+
"dimitribarbot/controlnet-dwpose-sdxl-1.0",
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
)
|
62 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
63 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
64 |
+
controlnet=controlnet,
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
variant="fp16",
|
67 |
+
).to(device)
|
68 |
+
|
69 |
+
# Infer.
|
70 |
+
prompt = "DJ in a party, shallow depth of field, highly detailed, high budget, gorgeous"
|
71 |
+
negative_prompt = "bad quality, blur, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
|
72 |
+
image = pipe(
|
73 |
+
prompt,
|
74 |
+
negative_prompt=negative_prompt,
|
75 |
+
num_inference_steps=50,
|
76 |
+
guidance_scale=5,
|
77 |
+
image=skeleton,
|
78 |
+
generator=torch.manual_seed(97),
|
79 |
+
).images[0]
|
80 |
+
```
|
81 |
+
|
82 |
+
Generated pose is:
|
83 |
+
|
84 |
+
![Pose 1](./images/dwpose_1.png)
|
85 |
+
|
86 |
+
Image generated by SDXL is:
|
87 |
+
|
88 |
+
![Pose 1](./images/dwpose_image_1.png)
|
89 |
+
|
90 |
+
#### Example 2
|
91 |
+
|
92 |
+
To generate a anime version of a woman sitting on a bench with the following pose:
|
93 |
+
|
94 |
+
![Pose Image 2](./images/pose_image_2.png)
|
95 |
+
|
96 |
+
Run the following code:
|
97 |
+
|
98 |
+
```python
|
99 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
100 |
+
import torch
|
101 |
+
from diffusers.utils import load_image
|
102 |
+
|
103 |
+
from easy_dwpose import DWposeDetector
|
104 |
+
|
105 |
+
|
106 |
+
pose_image = load_image("./pose_image_2.png")
|
107 |
+
|
108 |
+
# Load detector
|
109 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
110 |
+
dwpose = DWposeDetector(device=device)
|
111 |
+
|
112 |
+
# Compute DWpose conditioning image.
|
113 |
+
skeleton = dwpose(
|
114 |
+
pose_image,
|
115 |
+
detect_resolution=pose_image.width,
|
116 |
+
output_type="pil",
|
117 |
+
include_hands=True,
|
118 |
+
include_face=True,
|
119 |
+
)
|
120 |
+
|
121 |
+
# Initialize ControlNet pipeline.
|
122 |
+
controlnet = ControlNetModel.from_pretrained(
|
123 |
+
"dimitribarbot/controlnet-dwpose-sdxl-1.0",
|
124 |
+
torch_dtype=torch.float16,
|
125 |
+
)
|
126 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
127 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
128 |
+
controlnet=controlnet,
|
129 |
+
torch_dtype=torch.float16,
|
130 |
+
variant="fp16",
|
131 |
+
)
|
132 |
+
if torch.cuda.is_available():
|
133 |
+
pipe.to(torch.device("cuda"))
|
134 |
+
|
135 |
+
# Infer.
|
136 |
+
prompt = "Anime girl sitting on a bench, highly detailed, noon, ambiant light"
|
137 |
+
negative_prompt = "bad quality, blur, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
|
138 |
+
image = pipe(
|
139 |
+
prompt,
|
140 |
+
negative_prompt=negative_prompt,
|
141 |
+
num_inference_steps=25,
|
142 |
+
guidance_scale=18,
|
143 |
+
image=skeleton,
|
144 |
+
generator=torch.manual_seed(79),
|
145 |
+
).images[0]
|
146 |
+
```
|
147 |
+
|
148 |
+
Generated pose is:
|
149 |
+
|
150 |
+
![Pose 2](./images/dwpose_2.png)
|
151 |
+
|
152 |
+
Image generated by SDXL is:
|
153 |
+
|
154 |
+
![Pose 2](./images/dwpose_image_2.png)
|
155 |
+
|
156 |
+
### Training
|
157 |
+
|
158 |
+
The [training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md) by HFπ€ was used.
|
159 |
+
|
160 |
+
#### Training data
|
161 |
+
This checkpoint was trained for 15,000 steps on the [dimitribarbot/dw_pose_controlnet](https://huggingface.co/datasets/dimitribarbot/dw_pose_controlnet) dataset with a resolution of 1024.
|
162 |
+
|
163 |
+
#### Compute
|
164 |
+
One 1xA40 machine (during 48 hours)
|
165 |
+
|
166 |
+
#### Batch size
|
167 |
+
Data parallel with a single GPU batch size of 2 with gradient accumulation 8.
|
168 |
+
|
169 |
+
#### Hyper Parameters
|
170 |
+
Constant learning rate of 8e-5
|
171 |
+
|
172 |
+
#### Mixed precision
|
173 |
+
fp16
|
custom_dw_pose.png
DELETED
Binary file (65.3 kB)
|
|
dwpose_1.png β images/dwpose_1.png
RENAMED
File without changes
|
dwpose_2.png β images/dwpose_2.png
RENAMED
File without changes
|
dwpose_image_1.png β images/dwpose_image_1.png
RENAMED
File without changes
|
dwpose_image_2.png β images/dwpose_image_2.png
RENAMED
File without changes
|
pose_image_1.png β images/pose_image_1.png
RENAMED
File without changes
|
pose_image_2.png β images/pose_image_2.png
RENAMED
File without changes
|
pose.png
DELETED
Binary file (13.3 kB)
|
|