d1mitriz
commited on
Commit
·
29878be
1
Parent(s):
cc2c981
Greek Media SBERT upload to hub
Browse files- 1_Pooling/config.json +7 -0
- README.md +154 -0
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- eval/triplet_evaluation_results.csv +34 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- el
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
metrics:
|
11 |
+
- accuracy_cosinus
|
12 |
+
- accuracy_euclidean
|
13 |
+
- accuracy_manhattan
|
14 |
+
model-index:
|
15 |
+
- name: st-greek-media-bert-base-uncased
|
16 |
+
results: [
|
17 |
+
{name: STSbenchmark, value: 0.9563965089445283, limit: 0.0, unit: "%", metric: accuracy_cosinus},
|
18 |
+
{name: STSbenchmark, value: 0.9566394253292384, limit: 0.0, unit: "%", metric: accuracy_euclidean},
|
19 |
+
{name: STSbenchmark, value: 0.9565353183072198, limit: 0.0, unit: "%", metric: accuracy_manhattan}
|
20 |
+
]
|
21 |
+
---
|
22 |
+
|
23 |
+
# Greek Media SBERT (uncased)
|
24 |
+
## Sentence Transformer
|
25 |
+
|
26 |
+
This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media BERT (uncased)](https://huggingface.co/dimitriz/greek-media-bert-base-uncased) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
27 |
+
|
28 |
+
<!--- Describe your model here -->
|
29 |
+
|
30 |
+
## Usage (Sentence-Transformers)
|
31 |
+
|
32 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
33 |
+
|
34 |
+
```
|
35 |
+
pip install -U sentence-transformers
|
36 |
+
```
|
37 |
+
|
38 |
+
Then you can use the model like this:
|
39 |
+
|
40 |
+
```python
|
41 |
+
from sentence_transformers import SentenceTransformer
|
42 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
43 |
+
|
44 |
+
model = SentenceTransformer('dimitriz/st-greek-media-bert-base-uncased')
|
45 |
+
embeddings = model.encode(sentences)
|
46 |
+
print(embeddings)
|
47 |
+
```
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
## Usage (HuggingFace Transformers)
|
52 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
53 |
+
|
54 |
+
```python
|
55 |
+
from transformers import AutoTokenizer, AutoModel
|
56 |
+
import torch
|
57 |
+
|
58 |
+
|
59 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
60 |
+
def mean_pooling(model_output, attention_mask):
|
61 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
62 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
63 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
64 |
+
|
65 |
+
|
66 |
+
# Sentences we want sentence embeddings for
|
67 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
68 |
+
|
69 |
+
# Load model from HuggingFace Hub
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')
|
71 |
+
model = AutoModel.from_pretrained('dimitriz/st-greek-media-bert-base-uncased')
|
72 |
+
|
73 |
+
# Tokenize sentences
|
74 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
75 |
+
|
76 |
+
# Compute token embeddings
|
77 |
+
with torch.no_grad():
|
78 |
+
model_output = model(**encoded_input)
|
79 |
+
|
80 |
+
# Perform pooling. In this case, mean pooling.
|
81 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
82 |
+
|
83 |
+
print("Sentence embeddings:")
|
84 |
+
print(sentence_embeddings)
|
85 |
+
```
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
## Evaluation Results
|
90 |
+
|
91 |
+
<!--- Describe how your model was evaluated -->
|
92 |
+
|
93 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=dimitriz/st-greek-media-bert-base-uncased)
|
94 |
+
|
95 |
+
|
96 |
+
## Training
|
97 |
+
The model was trained on a custom dataset containing triplets from the **combined** Greek 'internet', 'social-media' and 'press' domains, described in the paper [DACL](https://...).
|
98 |
+
- The dataset was created by sampling triplets of sentences from the same domain, where the first two sentences are more similar than the third one.
|
99 |
+
- Training objective was to maximize the similarity between the first two sentences and minimize the similarity between the first and the third sentence.
|
100 |
+
- The model was trained for 3 epochs with a batch size of 16 and a maximum sequence length of 512 tokens.
|
101 |
+
- The model was trained on a single NVIDIA RTX A6000 GPU with 48GB of memory.
|
102 |
+
|
103 |
+
The model was trained with the parameters:
|
104 |
+
|
105 |
+
**DataLoader**:
|
106 |
+
|
107 |
+
`torch.utils.data.dataloader.DataLoader` of length 10807 with parameters:
|
108 |
+
```
|
109 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
110 |
+
```
|
111 |
+
|
112 |
+
**Loss**:
|
113 |
+
|
114 |
+
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
115 |
+
```
|
116 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
117 |
+
```
|
118 |
+
|
119 |
+
Parameters of the fit()-Method:
|
120 |
+
```
|
121 |
+
{
|
122 |
+
"epochs": 3,
|
123 |
+
"evaluation_steps": 1000,
|
124 |
+
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
|
125 |
+
"max_grad_norm": 1,
|
126 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
127 |
+
"optimizer_params": {
|
128 |
+
"lr": 2e-05
|
129 |
+
},
|
130 |
+
"scheduler": "WarmupLinear",
|
131 |
+
"steps_per_epoch": null,
|
132 |
+
"warmup_steps": 17290,
|
133 |
+
"weight_decay": 0.01
|
134 |
+
}
|
135 |
+
```
|
136 |
+
|
137 |
+
|
138 |
+
## Full Model Architecture
|
139 |
+
```
|
140 |
+
SentenceTransformer(
|
141 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
142 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
143 |
+
)
|
144 |
+
```
|
145 |
+
|
146 |
+
## Citing & Authors
|
147 |
+
|
148 |
+
```@inproceedings{...,
|
149 |
+
title={DACL},
|
150 |
+
author={Zaikis et al.},
|
151 |
+
booktitle={...},
|
152 |
+
year={2023}
|
153 |
+
}
|
154 |
+
```
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/dimitriz/.cache/torch/sentence_transformers/dimitriz_greek-media-bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"output_past": true,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.28.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 35000
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.0",
|
5 |
+
"pytorch": "2.0.0+cu118"
|
6 |
+
}
|
7 |
+
}
|
eval/triplet_evaluation_results.csv
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,accuracy_cosinus,accuracy_manhattan,accuracy_euclidean
|
2 |
+
0,1000,0.7708083910259746,0.7698714278278069,0.7704960699599188
|
3 |
+
0,2000,0.8108375409921399,0.8136310794163066,0.8141342633560633
|
4 |
+
0,3000,0.8408897680148526,0.8418961358943661,0.8424166710044593
|
5 |
+
0,4000,0.8605312928357017,0.8604792393246925,0.8606874533687298
|
6 |
+
0,5000,0.8751930317699929,0.8756268110284039,0.875748269220759
|
7 |
+
0,6000,0.8834695400204744,0.8842503426856142,0.8839553727898947
|
8 |
+
0,7000,0.8923706904030677,0.8926656602987871,0.8926309579581143
|
9 |
+
0,8000,0.8975413391633266,0.897714850866691,0.8978016067183732
|
10 |
+
0,9000,0.9009248173789323,0.901983238769455,0.9020526434508007
|
11 |
+
0,10000,0.9048461818749675,0.9053146634740513,0.9053493658147242
|
12 |
+
0,-1,0.9095483490361425,0.9099994794648899,0.9103812052122916
|
13 |
+
1,1000,0.9107976333003661,0.9109190914927212,0.9110405496850763
|
14 |
+
1,2000,0.9121857269272813,0.912255131608627,0.9129491784220846
|
15 |
+
1,3000,0.9159335797199522,0.9166102753630733,0.9167317335554284
|
16 |
+
1,4000,0.9201499141117069,0.9200458070896882,0.9203234258150712
|
17 |
+
1,5000,0.9212950913539119,0.9217982752936685,0.9219197334860236
|
18 |
+
1,6000,0.9216421147606406,0.9218503288046779,0.9219891381673694
|
19 |
+
1,7000,0.9259278538337411,0.9261013655371054,0.9262575260701335
|
20 |
+
1,8000,0.9295889507747298,0.9296063019450662,0.9296236531154026
|
21 |
+
1,9000,0.9333715059080735,0.9337011781444658,0.9337185293148023
|
22 |
+
1,10000,0.9384727499869866,0.9389585827564069,0.9390106362674162
|
23 |
+
1,-1,0.9391494456301077,0.9394444155258272,0.9396873319105373
|
24 |
+
2,1000,0.9392014991411171,0.9394097131851543,0.9397046830808738
|
25 |
+
2,2000,0.942081793416966,0.9421338469279753,0.9422726562906668
|
26 |
+
2,3000,0.9455173251435809,0.9454305692918987,0.9456214321655996
|
27 |
+
2,4000,0.9474433050509257,0.9475821144136172,0.9477209237763087
|
28 |
+
2,5000,0.9499245224090365,0.9500980341124009,0.9503583016674475
|
29 |
+
2,6000,0.9523883885968109,0.9523189839154651,0.9525271979595024
|
30 |
+
2,7000,0.9531171377509413,0.9530824354102684,0.953342702965315
|
31 |
+
2,8000,0.9544358266965107,0.9545225825481929,0.9545919872295386
|
32 |
+
2,9000,0.9547307965922301,0.9550778199989589,0.9551298735099683
|
33 |
+
2,10000,0.9560494855377996,0.9562403484115004,0.9563097530928462
|
34 |
+
2,-1,0.9563965089445283,0.9565353183072198,0.9566394253292384
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ea4bbca9a18265ab75010ac3747902c628356f065bae71b87ac50ac597566fe
|
3 |
+
size 451756589
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|