d1mitriz
commited on
Commit
·
6e633bd
1
Parent(s):
a387767
added proper citation to readme
Browse files
README.md
CHANGED
@@ -13,26 +13,27 @@ metrics:
|
|
13 |
- accuracy_manhattan
|
14 |
model-index:
|
15 |
- name: st-greek-media-bert-base-uncased
|
16 |
-
results:
|
17 |
-
|
18 |
-
|
19 |
-
"name": "STS Benchmark",
|
20 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
},
|
22 |
-
|
23 |
-
{ "type": "accuracy_cosinus", "value": 0.9563965089445283 },
|
24 |
-
{ "type": "accuracy_euclidean", "value": 0.9566394253292384 },
|
25 |
-
{ "type": "accuracy_manhattan", "value": 0.9565353183072198 }
|
26 |
-
],
|
27 |
-
"dataset": {
|
28 |
-
"name": "all_custom_greek_media_triplets",
|
29 |
-
"type": "sentence-pair"
|
30 |
-
},
|
31 |
-
}
|
32 |
-
]
|
33 |
---
|
34 |
|
35 |
# Greek Media SBERT (uncased)
|
|
|
36 |
## Sentence Transformer
|
37 |
|
38 |
This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media BERT (uncased)](https://huggingface.co/dimitriz/greek-media-bert-base-uncased) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
@@ -103,8 +104,8 @@ print(sentence_embeddings)
|
|
103 |
|
104 |
<!--- Describe how your model was evaluated -->
|
105 |
|
106 |
-
For an automated evaluation of this model, see the
|
107 |
-
|
108 |
|
109 |
## Training
|
110 |
|
@@ -132,9 +133,9 @@ The model was trained with the parameters:
|
|
132 |
|
133 |
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
Parameters of the fit()-Method:
|
140 |
|
@@ -159,17 +160,37 @@ Parameters of the fit()-Method:
|
|
159 |
|
160 |
```
|
161 |
SentenceTransformer(
|
162 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
163 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
164 |
)
|
165 |
```
|
166 |
|
167 |
## Citing & Authors
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
}
|
175 |
-
|
|
|
|
|
|
13 |
- accuracy_manhattan
|
14 |
model-index:
|
15 |
- name: st-greek-media-bert-base-uncased
|
16 |
+
results:
|
17 |
+
[
|
18 |
+
{
|
19 |
+
"task": { "name": "STS Benchmark", "type": "sentence-similarity" },
|
20 |
+
"metrics":
|
21 |
+
[
|
22 |
+
{ "type": "accuracy_cosinus", "value": 0.9563965089445283 },
|
23 |
+
{ "type": "accuracy_euclidean", "value": 0.9566394253292384 },
|
24 |
+
{ "type": "accuracy_manhattan", "value": 0.9565353183072198 },
|
25 |
+
],
|
26 |
+
"dataset":
|
27 |
+
{
|
28 |
+
"name": "all_custom_greek_media_triplets",
|
29 |
+
"type": "sentence-pair",
|
30 |
+
},
|
31 |
},
|
32 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
---
|
34 |
|
35 |
# Greek Media SBERT (uncased)
|
36 |
+
|
37 |
## Sentence Transformer
|
38 |
|
39 |
This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media BERT (uncased)](https://huggingface.co/dimitriz/greek-media-bert-base-uncased) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
104 |
|
105 |
<!--- Describe how your model was evaluated -->
|
106 |
|
107 |
+
For an automated evaluation of this model, see the _Sentence Embeddings
|
108 |
+
Benchmark_: [https://seb.sbert.net](https://seb.sbert.net?model_name=dimitriz/st-greek-media-bert-base-uncased)
|
109 |
|
110 |
## Training
|
111 |
|
|
|
133 |
|
134 |
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
135 |
|
136 |
+
```
|
137 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
138 |
+
```
|
139 |
|
140 |
Parameters of the fit()-Method:
|
141 |
|
|
|
160 |
|
161 |
```
|
162 |
SentenceTransformer(
|
163 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
164 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
165 |
)
|
166 |
```
|
167 |
|
168 |
## Citing & Authors
|
169 |
|
170 |
+
The model has been officially released with the article "DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks".
|
171 |
+
Dimitrios Zaikis, Stylianos Kokkas and Ioannis Vlahavas.
|
172 |
+
In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham".
|
173 |
+
|
174 |
+
If you use the model, please cite the following:
|
175 |
+
|
176 |
+
```bibtex
|
177 |
+
@InProceedings{10.1007/978-3-031-34204-2_47,
|
178 |
+
author="Zaikis, Dimitrios
|
179 |
+
and Kokkas, Stylianos
|
180 |
+
and Vlahavas, Ioannis",
|
181 |
+
editor="Iliadis, Lazaros
|
182 |
+
and Maglogiannis, Ilias
|
183 |
+
and Alonso, Serafin
|
184 |
+
and Jayne, Chrisina
|
185 |
+
and Pimenidis, Elias",
|
186 |
+
title="DACL: A Domain-Adapted Contrastive Learning Approach to Low Resource Language Representations for Document Clustering Tasks",
|
187 |
+
booktitle="Engineering Applications of Neural Networks",
|
188 |
+
year="2023",
|
189 |
+
publisher="Springer Nature Switzerland",
|
190 |
+
address="Cham",
|
191 |
+
pages="585--598",
|
192 |
+
isbn="978-3-031-34204-2"
|
193 |
}
|
194 |
+
|
195 |
+
|
196 |
+
```
|