Subiendo modelo inicial
Browse files- 1_Pooling/config.json +10 -0
- README.md +488 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:5600
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: BAAI/bge-small-en-v1.5
|
10 |
+
widget:
|
11 |
+
- source_sentence: What is the main factor of signal interference in MCFs?
|
12 |
+
sentences:
|
13 |
+
- The main factor of signal interference in MCFs is crosstalk, which is the leakage
|
14 |
+
of a fraction of the signal power from a given core to its neighboring core.
|
15 |
+
- An integrity group temporal key (IGTK) is a random value used to protect group
|
16 |
+
addressed medium access control (MAC) management protocol data units (MMPDUs)
|
17 |
+
from a broadcast/multicast source station (STA).
|
18 |
+
- Wireless sensing through the combined use of radio wave and AI technologies aims
|
19 |
+
to identify objects and recognize actions with high precision.
|
20 |
+
- source_sentence: What types of drones can be used to construct multi-tier drone-cell
|
21 |
+
networks?
|
22 |
+
sentences:
|
23 |
+
- The coupling coefficient represents the tightness of coupling between transmit
|
24 |
+
and receive coils in wireless charging systems.
|
25 |
+
- A cheap, slow photodiode placed next to the rear face of the laser package is
|
26 |
+
commonly used as the monitor detector in laser drive circuits.
|
27 |
+
- Multi-tier drone-cell networks can be constructed by utilizing several drone types,
|
28 |
+
similar to terrestrial HetNets with macro-, small-, femtocells, and relays.
|
29 |
+
- source_sentence: Which technology was explored for high capacity last mile and pre-aggregation
|
30 |
+
backhaul in small cell networks?
|
31 |
+
sentences:
|
32 |
+
- According to Pearl's Ladder of Causation, counterfactual questions can only be
|
33 |
+
answered if information from all other levels (associational and interventional)
|
34 |
+
is available. Counterfactuals subsume interventional and associational questions,
|
35 |
+
and therefore sit at the top of the hierarchy.
|
36 |
+
- Shannon's classical source coding theorem provides the minimum distortion achievable
|
37 |
+
in encoding a Gaussian stationary input signal.
|
38 |
+
- The passage mentions that 60 GHz and 70-80 GHz millimeter wave communication technologies
|
39 |
+
were explored for high capacity last mile and pre-aggregation backhaul in small
|
40 |
+
cell networks.
|
41 |
+
- source_sentence: What is the main output of the design procedure for a passive lossless
|
42 |
+
Huygens metasurface?
|
43 |
+
sentences:
|
44 |
+
- Entanglement distillation is the process of purifying imperfect entangled states
|
45 |
+
to obtain maximally entangled states.
|
46 |
+
- The main output of the design procedure is the transmitted fields as well as the
|
47 |
+
surface impedance and admittance.
|
48 |
+
- The component of IoT responsible for sensing and collecting data is the sensors.
|
49 |
+
- source_sentence: What is the formula for the relative entropy between two probability
|
50 |
+
density functions?
|
51 |
+
sentences:
|
52 |
+
- The consequence of the fact that the total power radiated varies as the square
|
53 |
+
of the frequency of the oscillation is that shorter wavelength (higher frequency)
|
54 |
+
light is scattered much more strongly than longer wavelength (lower frequency)
|
55 |
+
light.
|
56 |
+
- Hybrid infrastructures are comprised of various proximate and distant computing
|
57 |
+
nodes, either mobile or immobile.
|
58 |
+
- The relative entropy between two probability density functions f and g is equal
|
59 |
+
to the negative integral of f(x) multiplied by the logarithm of the ratio of f(x)
|
60 |
+
and g(x), with respect to x.
|
61 |
+
pipeline_tag: sentence-similarity
|
62 |
+
library_name: sentence-transformers
|
63 |
+
metrics:
|
64 |
+
- cosine_accuracy@1
|
65 |
+
- cosine_accuracy@3
|
66 |
+
- cosine_accuracy@5
|
67 |
+
- cosine_accuracy@10
|
68 |
+
- cosine_precision@1
|
69 |
+
- cosine_recall@1
|
70 |
+
- cosine_ndcg@10
|
71 |
+
- cosine_mrr@10
|
72 |
+
- cosine_map@100
|
73 |
+
model-index:
|
74 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
75 |
+
results:
|
76 |
+
- task:
|
77 |
+
type: information-retrieval
|
78 |
+
name: Information Retrieval
|
79 |
+
dataset:
|
80 |
+
name: telecom ir eval
|
81 |
+
type: telecom-ir-eval
|
82 |
+
metrics:
|
83 |
+
- type: cosine_accuracy@1
|
84 |
+
value: 0.9733333333333334
|
85 |
+
name: Cosine Accuracy@1
|
86 |
+
- type: cosine_accuracy@3
|
87 |
+
value: 0.995
|
88 |
+
name: Cosine Accuracy@3
|
89 |
+
- type: cosine_accuracy@5
|
90 |
+
value: 0.995
|
91 |
+
name: Cosine Accuracy@5
|
92 |
+
- type: cosine_accuracy@10
|
93 |
+
value: 0.995
|
94 |
+
name: Cosine Accuracy@10
|
95 |
+
- type: cosine_precision@1
|
96 |
+
value: 0.9733333333333334
|
97 |
+
name: Cosine Precision@1
|
98 |
+
- type: cosine_recall@1
|
99 |
+
value: 0.9733333333333334
|
100 |
+
name: Cosine Recall@1
|
101 |
+
- type: cosine_ndcg@10
|
102 |
+
value: 0.985912396714286
|
103 |
+
name: Cosine Ndcg@10
|
104 |
+
- type: cosine_mrr@10
|
105 |
+
value: 0.9827777777777778
|
106 |
+
name: Cosine Mrr@10
|
107 |
+
- type: cosine_map@100
|
108 |
+
value: 0.9831452173557438
|
109 |
+
name: Cosine Map@100
|
110 |
+
---
|
111 |
+
|
112 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
113 |
+
|
114 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
115 |
+
|
116 |
+
## Model Details
|
117 |
+
|
118 |
+
### Model Description
|
119 |
+
- **Model Type:** Sentence Transformer
|
120 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
121 |
+
- **Maximum Sequence Length:** 512 tokens
|
122 |
+
- **Output Dimensionality:** 384 dimensions
|
123 |
+
- **Similarity Function:** Cosine Similarity
|
124 |
+
- **Training Dataset:**
|
125 |
+
- csv
|
126 |
+
<!-- - **Language:** Unknown -->
|
127 |
+
<!-- - **License:** Unknown -->
|
128 |
+
|
129 |
+
### Model Sources
|
130 |
+
|
131 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
132 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
133 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
134 |
+
|
135 |
+
### Full Model Architecture
|
136 |
+
|
137 |
+
```
|
138 |
+
SentenceTransformer(
|
139 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
141 |
+
(2): Normalize()
|
142 |
+
)
|
143 |
+
```
|
144 |
+
|
145 |
+
## Usage
|
146 |
+
|
147 |
+
### Direct Usage (Sentence Transformers)
|
148 |
+
|
149 |
+
First install the Sentence Transformers library:
|
150 |
+
|
151 |
+
```bash
|
152 |
+
pip install -U sentence-transformers
|
153 |
+
```
|
154 |
+
|
155 |
+
Then you can load this model and run inference.
|
156 |
+
```python
|
157 |
+
from sentence_transformers import SentenceTransformer
|
158 |
+
|
159 |
+
# Download from the 🤗 Hub
|
160 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
161 |
+
# Run inference
|
162 |
+
sentences = [
|
163 |
+
'What is the formula for the relative entropy between two probability density functions?',
|
164 |
+
'The relative entropy between two probability density functions f and g is equal to the negative integral of f(x) multiplied by the logarithm of the ratio of f(x) and g(x), with respect to x.',
|
165 |
+
'The consequence of the fact that the total power radiated varies as the square of the frequency of the oscillation is that shorter wavelength (higher frequency) light is scattered much more strongly than longer wavelength (lower frequency) light.',
|
166 |
+
]
|
167 |
+
embeddings = model.encode(sentences)
|
168 |
+
print(embeddings.shape)
|
169 |
+
# [3, 384]
|
170 |
+
|
171 |
+
# Get the similarity scores for the embeddings
|
172 |
+
similarities = model.similarity(embeddings, embeddings)
|
173 |
+
print(similarities.shape)
|
174 |
+
# [3, 3]
|
175 |
+
```
|
176 |
+
|
177 |
+
<!--
|
178 |
+
### Direct Usage (Transformers)
|
179 |
+
|
180 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
181 |
+
|
182 |
+
</details>
|
183 |
+
-->
|
184 |
+
|
185 |
+
<!--
|
186 |
+
### Downstream Usage (Sentence Transformers)
|
187 |
+
|
188 |
+
You can finetune this model on your own dataset.
|
189 |
+
|
190 |
+
<details><summary>Click to expand</summary>
|
191 |
+
|
192 |
+
</details>
|
193 |
+
-->
|
194 |
+
|
195 |
+
<!--
|
196 |
+
### Out-of-Scope Use
|
197 |
+
|
198 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
199 |
+
-->
|
200 |
+
|
201 |
+
## Evaluation
|
202 |
+
|
203 |
+
### Metrics
|
204 |
+
|
205 |
+
#### Information Retrieval
|
206 |
+
|
207 |
+
* Dataset: `telecom-ir-eval`
|
208 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
209 |
+
|
210 |
+
| Metric | Value |
|
211 |
+
|:-------------------|:-----------|
|
212 |
+
| cosine_accuracy@1 | 0.9733 |
|
213 |
+
| cosine_accuracy@3 | 0.995 |
|
214 |
+
| cosine_accuracy@5 | 0.995 |
|
215 |
+
| cosine_accuracy@10 | 0.995 |
|
216 |
+
| cosine_precision@1 | 0.9733 |
|
217 |
+
| cosine_recall@1 | 0.9733 |
|
218 |
+
| **cosine_ndcg@10** | **0.9859** |
|
219 |
+
| cosine_mrr@10 | 0.9828 |
|
220 |
+
| cosine_map@100 | 0.9831 |
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Bias, Risks and Limitations
|
224 |
+
|
225 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
### Recommendations
|
230 |
+
|
231 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
## Training Details
|
235 |
+
|
236 |
+
### Training Dataset
|
237 |
+
|
238 |
+
#### csv
|
239 |
+
|
240 |
+
* Dataset: csv
|
241 |
+
* Size: 5,600 training samples
|
242 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
243 |
+
* Approximate statistics based on the first 1000 samples:
|
244 |
+
| | anchor | positive |
|
245 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
246 |
+
| type | string | string |
|
247 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 18.48 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.0 tokens</li><li>max: 85 tokens</li></ul> |
|
248 |
+
* Samples:
|
249 |
+
| anchor | positive |
|
250 |
+
|:-----------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
251 |
+
| <code>How can the unique decodability of a code be tested using the Sardinas and Patterson test?</code> | <code>The Sardinas and Patterson test for unique decodability involves checking if no codewords are prefixes of any other codewords.</code> |
|
252 |
+
| <code>What is the purpose of encapsulation in the OSI (Open System Interconnection) model?</code> | <code>Encapsulation is used to add control information and transform data units into protocol data units.</code> |
|
253 |
+
| <code>What advantages do measurements from user equipment (UE) have over drive tests in disaster small cell networks?</code> | <code>Measurements from user equipment (UE) have the advantages of reduced labor intensity, measurements obtained from additional locations, such as inside buildings, and better adaptation to specific characteristics and requirements in disaster scenarios.</code> |
|
254 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
255 |
+
```json
|
256 |
+
{
|
257 |
+
"scale": 20.0,
|
258 |
+
"similarity_fct": "cos_sim"
|
259 |
+
}
|
260 |
+
```
|
261 |
+
|
262 |
+
### Evaluation Dataset
|
263 |
+
|
264 |
+
#### csv
|
265 |
+
|
266 |
+
* Dataset: csv
|
267 |
+
* Size: 1,400 evaluation samples
|
268 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
269 |
+
* Approximate statistics based on the first 1000 samples:
|
270 |
+
| | anchor | positive |
|
271 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
272 |
+
| type | string | string |
|
273 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 18.92 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.0 tokens</li><li>max: 96 tokens</li></ul> |
|
274 |
+
* Samples:
|
275 |
+
| anchor | positive |
|
276 |
+
|:--------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
277 |
+
| <code>What are the three major steps in SLAM-based techniques for THz localization?</code> | <code>SLAM-based techniques for THz localization involve imaging the environment, estimating ranges to the user, and fusing the images with the estimated ranges.</code> |
|
278 |
+
| <code>What is the service time distribution in the M/M(X)/1 model?</code> | <code>In the M/M(X)/1 model, the service time distribution is exponential with parameter µ.</code> |
|
279 |
+
| <code>What is the main advantage of the ensemble patch method in generating adversarial patches?</code> | <code>The main advantage of the ensemble patch method is that it achieves a higher attack success rate compared to single patches.</code> |
|
280 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
281 |
+
```json
|
282 |
+
{
|
283 |
+
"scale": 20.0,
|
284 |
+
"similarity_fct": "cos_sim"
|
285 |
+
}
|
286 |
+
```
|
287 |
+
|
288 |
+
### Training Hyperparameters
|
289 |
+
#### Non-Default Hyperparameters
|
290 |
+
|
291 |
+
- `eval_strategy`: steps
|
292 |
+
- `per_device_train_batch_size`: 128
|
293 |
+
- `per_device_eval_batch_size`: 128
|
294 |
+
- `weight_decay`: 0.01
|
295 |
+
- `num_train_epochs`: 5
|
296 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
297 |
+
- `warmup_ratio`: 0.1
|
298 |
+
- `fp16`: True
|
299 |
+
- `load_best_model_at_end`: True
|
300 |
+
- `batch_sampler`: no_duplicates
|
301 |
+
|
302 |
+
#### All Hyperparameters
|
303 |
+
<details><summary>Click to expand</summary>
|
304 |
+
|
305 |
+
- `overwrite_output_dir`: False
|
306 |
+
- `do_predict`: False
|
307 |
+
- `eval_strategy`: steps
|
308 |
+
- `prediction_loss_only`: True
|
309 |
+
- `per_device_train_batch_size`: 128
|
310 |
+
- `per_device_eval_batch_size`: 128
|
311 |
+
- `per_gpu_train_batch_size`: None
|
312 |
+
- `per_gpu_eval_batch_size`: None
|
313 |
+
- `gradient_accumulation_steps`: 1
|
314 |
+
- `eval_accumulation_steps`: None
|
315 |
+
- `torch_empty_cache_steps`: None
|
316 |
+
- `learning_rate`: 5e-05
|
317 |
+
- `weight_decay`: 0.01
|
318 |
+
- `adam_beta1`: 0.9
|
319 |
+
- `adam_beta2`: 0.999
|
320 |
+
- `adam_epsilon`: 1e-08
|
321 |
+
- `max_grad_norm`: 1.0
|
322 |
+
- `num_train_epochs`: 5
|
323 |
+
- `max_steps`: -1
|
324 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
325 |
+
- `lr_scheduler_kwargs`: {}
|
326 |
+
- `warmup_ratio`: 0.1
|
327 |
+
- `warmup_steps`: 0
|
328 |
+
- `log_level`: passive
|
329 |
+
- `log_level_replica`: warning
|
330 |
+
- `log_on_each_node`: True
|
331 |
+
- `logging_nan_inf_filter`: True
|
332 |
+
- `save_safetensors`: True
|
333 |
+
- `save_on_each_node`: False
|
334 |
+
- `save_only_model`: False
|
335 |
+
- `restore_callback_states_from_checkpoint`: False
|
336 |
+
- `no_cuda`: False
|
337 |
+
- `use_cpu`: False
|
338 |
+
- `use_mps_device`: False
|
339 |
+
- `seed`: 42
|
340 |
+
- `data_seed`: None
|
341 |
+
- `jit_mode_eval`: False
|
342 |
+
- `use_ipex`: False
|
343 |
+
- `bf16`: False
|
344 |
+
- `fp16`: True
|
345 |
+
- `fp16_opt_level`: O1
|
346 |
+
- `half_precision_backend`: auto
|
347 |
+
- `bf16_full_eval`: False
|
348 |
+
- `fp16_full_eval`: False
|
349 |
+
- `tf32`: None
|
350 |
+
- `local_rank`: 0
|
351 |
+
- `ddp_backend`: None
|
352 |
+
- `tpu_num_cores`: None
|
353 |
+
- `tpu_metrics_debug`: False
|
354 |
+
- `debug`: []
|
355 |
+
- `dataloader_drop_last`: False
|
356 |
+
- `dataloader_num_workers`: 0
|
357 |
+
- `dataloader_prefetch_factor`: None
|
358 |
+
- `past_index`: -1
|
359 |
+
- `disable_tqdm`: False
|
360 |
+
- `remove_unused_columns`: True
|
361 |
+
- `label_names`: None
|
362 |
+
- `load_best_model_at_end`: True
|
363 |
+
- `ignore_data_skip`: False
|
364 |
+
- `fsdp`: []
|
365 |
+
- `fsdp_min_num_params`: 0
|
366 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
367 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
368 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
369 |
+
- `deepspeed`: None
|
370 |
+
- `label_smoothing_factor`: 0.0
|
371 |
+
- `optim`: adamw_torch
|
372 |
+
- `optim_args`: None
|
373 |
+
- `adafactor`: False
|
374 |
+
- `group_by_length`: False
|
375 |
+
- `length_column_name`: length
|
376 |
+
- `ddp_find_unused_parameters`: None
|
377 |
+
- `ddp_bucket_cap_mb`: None
|
378 |
+
- `ddp_broadcast_buffers`: False
|
379 |
+
- `dataloader_pin_memory`: True
|
380 |
+
- `dataloader_persistent_workers`: False
|
381 |
+
- `skip_memory_metrics`: True
|
382 |
+
- `use_legacy_prediction_loop`: False
|
383 |
+
- `push_to_hub`: False
|
384 |
+
- `resume_from_checkpoint`: None
|
385 |
+
- `hub_model_id`: None
|
386 |
+
- `hub_strategy`: every_save
|
387 |
+
- `hub_private_repo`: None
|
388 |
+
- `hub_always_push`: False
|
389 |
+
- `gradient_checkpointing`: False
|
390 |
+
- `gradient_checkpointing_kwargs`: None
|
391 |
+
- `include_inputs_for_metrics`: False
|
392 |
+
- `include_for_metrics`: []
|
393 |
+
- `eval_do_concat_batches`: True
|
394 |
+
- `fp16_backend`: auto
|
395 |
+
- `push_to_hub_model_id`: None
|
396 |
+
- `push_to_hub_organization`: None
|
397 |
+
- `mp_parameters`:
|
398 |
+
- `auto_find_batch_size`: False
|
399 |
+
- `full_determinism`: False
|
400 |
+
- `torchdynamo`: None
|
401 |
+
- `ray_scope`: last
|
402 |
+
- `ddp_timeout`: 1800
|
403 |
+
- `torch_compile`: False
|
404 |
+
- `torch_compile_backend`: None
|
405 |
+
- `torch_compile_mode`: None
|
406 |
+
- `dispatch_batches`: None
|
407 |
+
- `split_batches`: None
|
408 |
+
- `include_tokens_per_second`: False
|
409 |
+
- `include_num_input_tokens_seen`: False
|
410 |
+
- `neftune_noise_alpha`: None
|
411 |
+
- `optim_target_modules`: None
|
412 |
+
- `batch_eval_metrics`: False
|
413 |
+
- `eval_on_start`: False
|
414 |
+
- `use_liger_kernel`: False
|
415 |
+
- `eval_use_gather_object`: False
|
416 |
+
- `average_tokens_across_devices`: False
|
417 |
+
- `prompts`: None
|
418 |
+
- `batch_sampler`: no_duplicates
|
419 |
+
- `multi_dataset_batch_sampler`: proportional
|
420 |
+
|
421 |
+
</details>
|
422 |
+
|
423 |
+
### Training Logs
|
424 |
+
| Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
|
425 |
+
|:----------:|:-------:|:-------------:|:---------------:|:------------------------------:|
|
426 |
+
| 1.1364 | 50 | 0.2567 | 0.0419 | 0.9844 |
|
427 |
+
| **2.2727** | **100** | **0.0502** | **0.0397** | **0.9859** |
|
428 |
+
| 3.4091 | 150 | 0.0277 | 0.0399 | 0.9846 |
|
429 |
+
| 4.5455 | 200 | 0.0231 | 0.0406 | 0.9840 |
|
430 |
+
| 5.0 | 220 | - | - | 0.9859 |
|
431 |
+
|
432 |
+
* The bold row denotes the saved checkpoint.
|
433 |
+
|
434 |
+
### Framework Versions
|
435 |
+
- Python: 3.10.12
|
436 |
+
- Sentence Transformers: 3.3.1
|
437 |
+
- Transformers: 4.47.1
|
438 |
+
- PyTorch: 2.5.1+cu121
|
439 |
+
- Accelerate: 1.2.1
|
440 |
+
- Datasets: 3.2.0
|
441 |
+
- Tokenizers: 0.21.0
|
442 |
+
|
443 |
+
## Citation
|
444 |
+
|
445 |
+
### BibTeX
|
446 |
+
|
447 |
+
#### Sentence Transformers
|
448 |
+
```bibtex
|
449 |
+
@inproceedings{reimers-2019-sentence-bert,
|
450 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
451 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
452 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
453 |
+
month = "11",
|
454 |
+
year = "2019",
|
455 |
+
publisher = "Association for Computational Linguistics",
|
456 |
+
url = "https://arxiv.org/abs/1908.10084",
|
457 |
+
}
|
458 |
+
```
|
459 |
+
|
460 |
+
#### MultipleNegativesRankingLoss
|
461 |
+
```bibtex
|
462 |
+
@misc{henderson2017efficient,
|
463 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
464 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
465 |
+
year={2017},
|
466 |
+
eprint={1705.00652},
|
467 |
+
archivePrefix={arXiv},
|
468 |
+
primaryClass={cs.CL}
|
469 |
+
}
|
470 |
+
```
|
471 |
+
|
472 |
+
<!--
|
473 |
+
## Glossary
|
474 |
+
|
475 |
+
*Clearly define terms in order to be accessible across audiences.*
|
476 |
+
-->
|
477 |
+
|
478 |
+
<!--
|
479 |
+
## Model Card Authors
|
480 |
+
|
481 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
482 |
+
-->
|
483 |
+
|
484 |
+
<!--
|
485 |
+
## Model Card Contact
|
486 |
+
|
487 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
488 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.47.1",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d357419411446da249884d22a397c852f92dc65a14dfa14ad1b1972f6c66e28
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|