File size: 22,232 Bytes
a0ba6a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6552
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: What property is denoted as the M→M property in the queueing network
literature?
sentences:
- 'The LOFAR system introduces two additional levels in the beam hierarchy: the
compound (tile) beam and the station beam.'
- The desired pseudonoise sequence in a CDMA system has the characteristics that
the fraction of 0's and 1's is almost half-and-half over the period, and the shifted
versions of the pseudonoise sequence are nearly orthogonal to each other. If the
shift of the pseudonoise sequence is randomized, it becomes a random process.
- The M→M property in the queueing network literature denotes the independence of
individual queues in the long term.
- source_sentence: Which type of channel condition has better path loss exponent (PLE)
in terms of AA (air to air) and AG (air to ground) propagation channels?
sentences:
- The goal of the Fixed Access Information API is to provide access network related
information for the multitude of fixed access technologies.
- Error mitigation is a technique to reduce the impact of errors in near-term quantum
systems without requiring full fault-tolerant quantum codes.
- From the document, it is mentioned that the AA channel has better conditions than
the AG channel in terms of path loss exponent (PLE).
- source_sentence: What is the goal of a functionality extraction attack?
sentences:
- Deep learning can automatically extract high-level features from data, reducing
the need for manual feature engineering.
- The goal of a functionality extraction attack is to create knock-off models that
mimic the behavior of an existing machine learning model.
- The main advantage of using wind turbine towers for communication is that they
already have a reliable power grid connection.
- source_sentence: What is MTU?
sentences:
- The worst-case complexity of average consensus is exponential in the number of
nodes, but it can be reduced to linear if an upper bound on the total number of
nodes is known.
- In a normally clad fiber, at long wavelengths, the MFD is large compared to the
core diameter and the electric field extends far into the cladding region.
- MTU (Maximum Transmission Unit) represents the largest size of a data packet that
can be sent over a network without fragmentation.
- source_sentence: What should the AP or PCP do if it is not decentralized AP or PCP
clustering capable or a decentralized AP or PCP cluster is not present?
sentences:
- When a Data, Management or Extension frame is received, a STA inserts it in an
appropriate cache.
- If the AP or PCP is not decentralized AP or PCP clustering capable or a decentralized
AP or PCP cluster is not present, it should set its Cluster Member Role to 0 (not
currently participating in a cluster) and remain unclustered.
- Analog beamforming based on slowly-varying second order statistics of the CSI
reduces the dimension of the effective instantaneous CSI for digital beamforming
within each coherent fading block, which helps to relieve the signaling overhead.
datasets:
- dinho1597/Telecom-QA-MultipleChoice
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: telecom ir eval
type: telecom-ir-eval
metrics:
- type: cosine_accuracy@1
value: 0.965675057208238
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.992372234935164
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9931350114416476
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9938977879481312
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.965675057208238
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.965675057208238
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.9824027787882591
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9784334023464457
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9786169716375667
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What should the AP or PCP do if it is not decentralized AP or PCP clustering capable or a decentralized AP or PCP cluster is not present?',
'If the AP or PCP is not decentralized AP or PCP clustering capable or a decentralized AP or PCP cluster is not present, it should set its Cluster Member Role to 0 (not currently participating in a cluster) and remain unclustered.',
'When a Data, Management or Extension frame is received, a STA inserts it in an appropriate cache.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `telecom-ir-eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy@1 | 0.9657 |
| cosine_accuracy@3 | 0.9924 |
| cosine_accuracy@5 | 0.9931 |
| cosine_accuracy@10 | 0.9939 |
| cosine_precision@1 | 0.9657 |
| cosine_recall@1 | 0.9657 |
| **cosine_ndcg@10** | **0.9824** |
| cosine_mrr@10 | 0.9784 |
| cosine_map@100 | 0.9786 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### telecom-qa-multiple_choice
* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
* Size: 6,552 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.95 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 29.33 tokens</li><li>max: 112 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the goal of a jammer in a mobile edge caching system?</code> | <code>The goal of a jammer in a mobile edge caching system is to interrupt ongoing radio transmissions of the edge node with cached chunks or caching users and prevent access to cached content. Additionally, jammers aim to deplete the resources of edge nodes, caching users, and sensors during failed communication attempts.</code> |
| <code>Which type of DRL uses DNNs (Deep Neural Networks) to fit action values and employs experience replay and target networks to ensure stable training convergence?</code> | <code>Value-based DRL, such as Deep Q-Learning (DQL), uses DNNs to fit action values and employs experience replay and target networks to ensure stable training convergence.</code> |
| <code>What is the relationship between the curvature of the decision boundary and the robustness of a network?</code> | <code>The lower the curvature of the decision boundaries, the more robust the network.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### telecom-qa-multiple_choice
* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
* Size: 6,552 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.87 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.45 tokens</li><li>max: 91 tokens</li></ul> |
* Samples:
| anchor | positive |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which forward error correction (FEC) codes are available for the THz single carrier mode?</code> | <code>The THz single carrier mode (THz-SC PHY) in the IEEE 802.15.3d standard supports two low-density parity-check (LDPC) codes: 14/15 LDPC (1440,1344) and 11/15 LDPC (1440,1056).</code> |
| <code>Which multiple access technique allows users to access the channel simultaneously using the same frequency and time resources, with different power levels?</code> | <code>Non-Orthogonal Multiple Access (NOMA) allows users to access the channel simultaneously using the same frequency and time resources, but with different power levels.</code> |
| <code>What is the power gain when doubling the number of antennas?</code> | <code>Doubling the number of antennas yields a 3-dB power gain.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `weight_decay`: 0.01
- `num_train_epochs`: 15
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------------:|
| 1.2727 | 15 | 1.0332 | 0.0968 | 0.9725 |
| 2.5455 | 30 | 0.2091 | 0.0518 | 0.9808 |
| 3.8182 | 45 | 0.0997 | 0.0470 | 0.9824 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |