File size: 22,336 Bytes
f6eea6d
 
 
 
 
 
 
 
 
 
dd05793
 
f6eea6d
dd05793
 
 
 
 
 
 
 
 
f6eea6d
dd05793
 
 
 
 
 
 
 
 
f6eea6d
dd05793
 
 
 
 
 
 
f6eea6d
dd05793
 
 
 
 
 
 
 
f6eea6d
dd05793
 
 
 
 
 
 
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
dd05793
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
 
 
 
 
 
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
 
 
f6eea6d
dd05793
 
 
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
 
 
f6eea6d
dd05793
 
 
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
f6eea6d
dd05793
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
dd05793
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd05793
 
 
 
 
 
 
 
 
 
 
 
 
f6eea6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6552
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: What problem can reconfigurable intelligent surfaces mitigate in
    light fidelity systems?
  sentences:
  - The document mentions that blind channel estimation requires a large number of
    data symbols to improve accuracy, which may not be feasible in practice.
  - Empirical evidence suggests that the power decay can even be exponential with
    distance.
  - Reconfigurable intelligent surface-enabled environments can enhance light fidelity
    coverage by mitigating the dead-zone problem for users at the edge of the cell,
    improving link quality.
- source_sentence: What is the advantage of conformal arrays in UAV (Unmanned Aerial
    Vehicle) communication systems?
  sentences:
  - Overfitting occurs when a model fits the training data too well and fails to generalize
    to unseen data, while underfitting occurs when a model does not fit the training
    data well enough to capture the underlying patterns.
  - A point-to-multipoint service is a service type in which data is sent to all service
    subscribers or a pre-defined subset of all subscribers within an area defined
    by the Service Requester.
  - Conformal arrays offer good aerodynamic performance, enable full-space beam scanning,
    and provide more DoFs for geometry design.
- source_sentence: What is a Virtual Home Environment?
  sentences:
  - Compressive spectrum sensing utilizes the sparsity property of signals to enable
    sub-Nyquist sampling.
  - A Virtual Home Environment is a concept that allows for the portability of personal
    service environments across network boundaries and between terminals.
  - In the Client Server model, a Client application waits passively on contact while
    a Server starts the communication actively.
- source_sentence: What is multi-agent RL (Reinforcement learning) concerned with?
  sentences:
  - Data centers account for about 1% of global electricity demand, as stated in the
    document.
  - Fog Computing and Communication in the Frugal 5G network architecture brings intelligence
    to the edge and enables more efficient communication with reduced resource usage.
  - Multi-agent RL is concerned with learning in presence of multiple agents and encompasses
    unique problem formulation that draws from game theoretical concepts.
- source_sentence: What is the trade-off between privacy and convergence performance
    when using artificial noise obscuring in federated learning?
  sentences:
  - The 'decrypt_error' alert indicates a handshake cryptographic operation failed,
    including being unable to verify a signature, decrypt a key exchange, or validate
    a finished message.
  - The trade-off between privacy and convergence performance when using artificial
    noise obscuring in federated learning is that increasing the noise variance improves
    privacy but degrades convergence.
  - The design rules for sub-carrier allocations to users in cellular systems are
    to allocate the sub-carriers as spread out as possible and hop the sub-carriers
    every OFDM symbol time.
datasets:
- dinho1597/Telecom-QA-MultipleChoice
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: telecom ir eval
      type: telecom-ir-eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.9679633867276888
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9916094584286804
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9916094584286804
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.992372234935164
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9679633867276888
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.9679633867276888
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.9823240649953693
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9788647342995168
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9791402442094453
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What is the trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning?',
    'The trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning is that increasing the noise variance improves privacy but degrades convergence.',
    "The 'decrypt_error' alert indicates a handshake cryptographic operation failed, including being unable to verify a signature, decrypt a key exchange, or validate a finished message.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `telecom-ir-eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy@1  | 0.968      |
| cosine_accuracy@3  | 0.9916     |
| cosine_accuracy@5  | 0.9916     |
| cosine_accuracy@10 | 0.9924     |
| cosine_precision@1 | 0.968      |
| cosine_recall@1    | 0.968      |
| **cosine_ndcg@10** | **0.9823** |
| cosine_mrr@10      | 0.9789     |
| cosine_map@100     | 0.9791     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### telecom-qa-multiple_choice

* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
* Size: 6,552 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.27 tokens</li><li>max: 92 tokens</li></ul> |
* Samples:
  | anchor                                                                                             | positive                                                                                                                                                                                                                   |
  |:---------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is multi-user multiple input, multiple output (MU-MIMO) in IEEE 802.11-2020?</code>     | <code>MU-MIMO is a technique by which multiple stations (STAs) either simultaneously transmit to a single STA or simultaneously receive from a single STA independent data streams over the same radio frequencies.</code> |
  | <code>What is the purpose of wireless network virtualization?</code>                               | <code>The purpose of wireless network virtualization is to improve resource utilization, support diverse services/use cases, and be cost-effective and flexible for new services.</code>                                   |
  | <code>What is the E2E (end-to-end) latency requirement for factory automation applications?</code> | <code>Factory automation applications require an E2E latency of 0.25-10 ms.</code>                                                                                                                                         |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### telecom-qa-multiple_choice

* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398)
* Size: 6,552 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 18.5 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.83 tokens</li><li>max: 85 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                     | positive                                                                                                                                                                                                                                                                                                     |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Which standard enables building Digital Twins of different Physical Twins using combinations of XML (eXtensible Markup Language) and C codes?</code> | <code>The functional mockup interface (FMI) is a standard that enables building Digital Twins of different Physical Twins using combinations of XML and C codes.</code>                                                                                                                                      |
  | <code>What algorithm is commonly used for digital signatures in S/MIME?</code>                                                                             | <code>RSA is commonly used for digital signatures in S/MIME.</code>                                                                                                                                                                                                                                          |
  | <code>What are the three modes of operation based on the communication range and the SA (subarray) separation?</code>                                      | <code>The three modes of operation based on the communication range and the SA separation are: (1) a mode where the channel paths are independent and the channel is always well-conditioned, (2) a mode where the channel is ill-conditioned, and (3) a mode where the channel is highly correlated.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `weight_decay`: 0.01
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:------------------------------:|
| 0.7143 | 15   | 0.824         | 0.1333          | 0.9701                         |
| 1.3810 | 30   | 0.1731        | 0.0759          | 0.9776                         |
| 2.0476 | 45   | 0.0917        | 0.0657          | 0.9807                         |
| 2.7619 | 60   | 0.0676        | 0.0609          | 0.9813                         |
| 3.4286 | 75   | 0.0435        | 0.0596          | 0.9818                         |
| 4.0952 | 90   | 0.038         | 0.0606          | 0.9814                         |
| 4.8095 | 105  | 0.0332        | 0.0594          | 0.9820                         |
| 5.4762 | 120  | 0.0269        | 0.0607          | 0.9817                         |
| 6.1429 | 135  | 0.0219        | 0.0600          | 0.9819                         |
| 6.8571 | 150  | 0.0244        | 0.0599          | 0.9823                         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->