File size: 6,795 Bytes
a9bed40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 019-microsoft-MiniLM-finetuned-yahoo-80000_20000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 019-microsoft-MiniLM-finetuned-yahoo-80000_20000

This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8508
- F1: 0.7322
- Accuracy: 0.7357
- Precision: 0.7318
- Recall: 0.7357
- System Ram Used: 4.0900
- System Ram Total: 83.4807
- Gpu Ram Allocated: 0.3934
- Gpu Ram Cached: 16.0508
- Gpu Ram Total: 39.5640
- Gpu Utilization: 31
- Disk Space Used: 26.4706
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 1.5316        | 0.25  | 625   | 1.1302          | 0.6824 | 0.6928   | 0.6859    | 0.6928 | 4.1089          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 33              | 25.7180         | 78.1898          |
| 1.0615        | 0.5   | 1250  | 1.0022          | 0.7011 | 0.7049   | 0.7065    | 0.7049 | 3.8585          | 83.4807          | 0.3936            | 16.0508        | 39.5640       | 33              | 26.0913         | 78.1898          |
| 0.9804        | 0.75  | 1875  | 0.9258          | 0.7158 | 0.7191   | 0.7201    | 0.7191 | 3.8640          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 33              | 26.4646         | 78.1898          |
| 0.9244        | 1.0   | 2500  | 0.8795          | 0.7219 | 0.7286   | 0.7266    | 0.7286 | 3.8815          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 32              | 26.4649         | 78.1898          |
| 0.8471        | 1.25  | 3125  | 0.8886          | 0.7243 | 0.7305   | 0.7280    | 0.7305 | 4.0318          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 31              | 26.4653         | 78.1898          |
| 0.8294        | 1.5   | 3750  | 0.8648          | 0.7285 | 0.7303   | 0.7304    | 0.7303 | 3.8228          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 33              | 26.4656         | 78.1898          |
| 0.8229        | 1.75  | 4375  | 0.8477          | 0.7306 | 0.7347   | 0.7314    | 0.7347 | 3.8704          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 32              | 26.4658         | 78.1898          |
| 0.8227        | 2.0   | 5000  | 0.8514          | 0.7300 | 0.7321   | 0.7343    | 0.7321 | 3.8656          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 34              | 26.4661         | 78.1898          |
| 0.7515        | 2.25  | 5625  | 0.8580          | 0.7286 | 0.7327   | 0.7324    | 0.7327 | 4.0576          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 32              | 26.4664         | 78.1898          |
| 0.7523        | 2.5   | 6250  | 0.8498          | 0.7296 | 0.734    | 0.7314    | 0.734  | 3.8656          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 32              | 26.4666         | 78.1898          |
| 0.7396        | 2.75  | 6875  | 0.8403          | 0.7326 | 0.7365   | 0.7323    | 0.7365 | 3.8686          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 33              | 26.4669         | 78.1898          |
| 0.7308        | 3.0   | 7500  | 0.8414          | 0.7348 | 0.7378   | 0.7339    | 0.7378 | 3.8611          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 26              | 26.4671         | 78.1898          |
| 0.6929        | 3.25  | 8125  | 0.8551          | 0.7322 | 0.7350   | 0.7376    | 0.7350 | 4.0565          | 83.4807          | 0.3936            | 16.0508        | 39.5640       | 29              | 26.4680         | 78.1898          |
| 0.6772        | 3.5   | 8750  | 0.8471          | 0.7335 | 0.738    | 0.7327    | 0.738  | 3.8351          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 31              | 26.4684         | 78.1898          |
| 0.682         | 3.75  | 9375  | 0.8460          | 0.7311 | 0.735    | 0.7311    | 0.735  | 3.8782          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 34              | 26.4686         | 78.1898          |
| 0.6741        | 4.0   | 10000 | 0.8409          | 0.7335 | 0.7376   | 0.7330    | 0.7376 | 3.8848          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 31              | 26.4690         | 78.1898          |
| 0.6247        | 4.25  | 10625 | 0.8500          | 0.7332 | 0.736    | 0.7324    | 0.736  | 4.0838          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 32              | 26.4694         | 78.1898          |
| 0.6446        | 4.5   | 11250 | 0.8464          | 0.7323 | 0.7358   | 0.7320    | 0.7358 | 3.8687          | 83.4807          | 0.3936            | 16.0508        | 39.5640       | 31              | 26.4697         | 78.1898          |
| 0.6355        | 4.75  | 11875 | 0.8503          | 0.7311 | 0.7349   | 0.7308    | 0.7349 | 3.8853          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 30              | 26.4700         | 78.1898          |
| 0.6396        | 5.0   | 12500 | 0.8508          | 0.7322 | 0.7357   | 0.7318    | 0.7357 | 3.8995          | 83.4807          | 0.3935            | 16.0508        | 39.5640       | 33              | 26.4704         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3