dipteshkanojia commited on
Commit
d497fc4
·
1 Parent(s): 7612d7c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: hing-roberta-NCM-run-1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # hing-roberta-NCM-run-1
19
+
20
+ This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 3.2912
23
+ - Accuracy: 0.6667
24
+ - Precision: 0.6513
25
+ - Recall: 0.6494
26
+ - F1: 0.6502
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.8968 | 1.0 | 927 | 0.8552 | 0.6257 | 0.6508 | 0.5961 | 0.5969 |
58
+ | 0.7022 | 2.0 | 1854 | 1.1142 | 0.3937 | 0.3270 | 0.3273 | 0.2051 |
59
+ | 0.5569 | 3.0 | 2781 | 0.9130 | 0.6591 | 0.6566 | 0.6612 | 0.6509 |
60
+ | 0.363 | 4.0 | 3708 | 1.6630 | 0.6526 | 0.6634 | 0.6414 | 0.6436 |
61
+ | 0.2801 | 5.0 | 4635 | 2.0458 | 0.6451 | 0.6339 | 0.6345 | 0.6330 |
62
+ | 0.1925 | 6.0 | 5562 | 2.3378 | 0.6570 | 0.6439 | 0.6254 | 0.6277 |
63
+ | 0.1297 | 7.0 | 6489 | 2.5205 | 0.6839 | 0.6719 | 0.6651 | 0.6675 |
64
+ | 0.114 | 8.0 | 7416 | 2.8373 | 0.6505 | 0.6379 | 0.6249 | 0.6280 |
65
+ | 0.0994 | 9.0 | 8343 | 2.5358 | 0.6634 | 0.6539 | 0.6446 | 0.6474 |
66
+ | 0.0977 | 10.0 | 9270 | 2.8244 | 0.6537 | 0.6489 | 0.6210 | 0.6238 |
67
+ | 0.0623 | 11.0 | 10197 | 2.7593 | 0.6764 | 0.6602 | 0.6487 | 0.6510 |
68
+ | 0.0537 | 12.0 | 11124 | 2.9823 | 0.6677 | 0.6679 | 0.6450 | 0.6488 |
69
+ | 0.0432 | 13.0 | 12051 | 3.0792 | 0.6537 | 0.6465 | 0.6352 | 0.6378 |
70
+ | 0.0406 | 14.0 | 12978 | 3.0707 | 0.6688 | 0.6592 | 0.6509 | 0.6534 |
71
+ | 0.0296 | 15.0 | 13905 | 3.3289 | 0.6667 | 0.6596 | 0.6452 | 0.6486 |
72
+ | 0.0288 | 16.0 | 14832 | 3.2147 | 0.6645 | 0.6592 | 0.6512 | 0.6528 |
73
+ | 0.024 | 17.0 | 15759 | 3.3284 | 0.6645 | 0.6470 | 0.6405 | 0.6425 |
74
+ | 0.0201 | 18.0 | 16686 | 3.2428 | 0.6688 | 0.6515 | 0.6515 | 0.6515 |
75
+ | 0.0176 | 19.0 | 17613 | 3.2680 | 0.6710 | 0.6574 | 0.6536 | 0.6547 |
76
+ | 0.0168 | 20.0 | 18540 | 3.2912 | 0.6667 | 0.6513 | 0.6494 | 0.6502 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.20.1
82
+ - Pytorch 1.10.1+cu111
83
+ - Datasets 2.3.2
84
+ - Tokenizers 0.12.1