File size: 3,323 Bytes
867831f 4929a20 867831f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: l3cube-pune/hing-roberta
model-index:
- name: hing-roberta-NCM-run-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hing-roberta-NCM-run-4
This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3405
- Accuracy: 0.6505
- Precision: 0.6410
- Recall: 0.6318
- F1: 0.6350
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8975 | 1.0 | 927 | 0.9553 | 0.6127 | 0.5994 | 0.6026 | 0.5930 |
| 0.6924 | 2.0 | 1854 | 0.8426 | 0.6505 | 0.6535 | 0.6344 | 0.6372 |
| 0.472 | 3.0 | 2781 | 1.0533 | 0.6570 | 0.6449 | 0.6442 | 0.6442 |
| 0.3271 | 4.0 | 3708 | 1.8111 | 0.6624 | 0.6635 | 0.6407 | 0.6448 |
| 0.2368 | 5.0 | 4635 | 2.1234 | 0.6483 | 0.6297 | 0.6288 | 0.6267 |
| 0.172 | 6.0 | 5562 | 2.5340 | 0.6419 | 0.6312 | 0.6164 | 0.6199 |
| 0.1251 | 7.0 | 6489 | 2.5758 | 0.6472 | 0.6405 | 0.6311 | 0.6336 |
| 0.0943 | 8.0 | 7416 | 2.9090 | 0.6332 | 0.6337 | 0.6090 | 0.6124 |
| 0.0919 | 9.0 | 8343 | 2.8236 | 0.6494 | 0.6394 | 0.6301 | 0.6329 |
| 0.0851 | 10.0 | 9270 | 2.9368 | 0.6570 | 0.6448 | 0.6405 | 0.6422 |
| 0.0602 | 11.0 | 10197 | 3.2925 | 0.6289 | 0.6221 | 0.6111 | 0.6140 |
| 0.0551 | 12.0 | 11124 | 3.1185 | 0.6397 | 0.6239 | 0.6108 | 0.6131 |
| 0.0498 | 13.0 | 12051 | 3.0170 | 0.6559 | 0.6400 | 0.6322 | 0.6341 |
| 0.0309 | 14.0 | 12978 | 3.0934 | 0.6537 | 0.6481 | 0.6386 | 0.6410 |
| 0.0303 | 15.0 | 13905 | 3.1530 | 0.6440 | 0.6292 | 0.6258 | 0.6272 |
| 0.028 | 16.0 | 14832 | 3.1491 | 0.6570 | 0.6502 | 0.6346 | 0.6385 |
| 0.0199 | 17.0 | 15759 | 3.2515 | 0.6526 | 0.6394 | 0.6295 | 0.6324 |
| 0.0245 | 18.0 | 16686 | 3.2644 | 0.6526 | 0.6494 | 0.6315 | 0.6356 |
| 0.0159 | 19.0 | 17613 | 3.3344 | 0.6483 | 0.6377 | 0.6295 | 0.6324 |
| 0.0116 | 20.0 | 18540 | 3.3405 | 0.6505 | 0.6410 | 0.6318 | 0.6350 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1
|