Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +995 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: FacebookAI/xlm-roberta-large
|
3 |
+
datasets:
|
4 |
+
- sentence-transformers/stsb
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: sentence-transformers
|
8 |
+
metrics:
|
9 |
+
- pearson_cosine
|
10 |
+
- spearman_cosine
|
11 |
+
- pearson_manhattan
|
12 |
+
- spearman_manhattan
|
13 |
+
- pearson_euclidean
|
14 |
+
- spearman_euclidean
|
15 |
+
- pearson_dot
|
16 |
+
- spearman_dot
|
17 |
+
- pearson_max
|
18 |
+
- spearman_max
|
19 |
+
pipeline_tag: sentence-similarity
|
20 |
+
tags:
|
21 |
+
- sentence-transformers
|
22 |
+
- sentence-similarity
|
23 |
+
- feature-extraction
|
24 |
+
- generated_from_trainer
|
25 |
+
- dataset_size:5749
|
26 |
+
- loss:MatryoshkaLoss
|
27 |
+
- loss:CoSENTLoss
|
28 |
+
widget:
|
29 |
+
- source_sentence: A chef is preparing some food.
|
30 |
+
sentences:
|
31 |
+
- Five birds stand on the snow.
|
32 |
+
- A chef prepared a meal.
|
33 |
+
- There is no 'still' that is not relative to some other object.
|
34 |
+
- source_sentence: A woman is adding oil on fishes.
|
35 |
+
sentences:
|
36 |
+
- Large cruise ship floating on the water.
|
37 |
+
- It refers to the maximum f-stop (which is defined as the ratio of focal length
|
38 |
+
to effective aperture diameter).
|
39 |
+
- The woman is cutting potatoes.
|
40 |
+
- source_sentence: The player shoots the winning points.
|
41 |
+
sentences:
|
42 |
+
- Minimum wage laws hurt the least skilled, least productive the most.
|
43 |
+
- The basketball player is about to score points for his team.
|
44 |
+
- Three televisions, on on the floor, the other two on a box.
|
45 |
+
- source_sentence: Stars form in star-formation regions, which itself develop from
|
46 |
+
molecular clouds.
|
47 |
+
sentences:
|
48 |
+
- Although I believe Searle is mistaken, I don't think you have found the problem.
|
49 |
+
- It may be possible for a solar system like ours to exist outside of a galaxy.
|
50 |
+
- A blond-haired child performing on the trumpet in front of a house while his younger
|
51 |
+
brother watches.
|
52 |
+
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
|
53 |
+
consort, the King has always been the sovereign.
|
54 |
+
sentences:
|
55 |
+
- At first, I thought this is a bit of a tricky question.
|
56 |
+
- A man plays the guitar.
|
57 |
+
- There is a very good reason not to refer to the Queen's spouse as "King" - because
|
58 |
+
they aren't the King.
|
59 |
+
model-index:
|
60 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: semantic-similarity
|
64 |
+
name: Semantic Similarity
|
65 |
+
dataset:
|
66 |
+
name: sts dev 768
|
67 |
+
type: sts-dev-768
|
68 |
+
metrics:
|
69 |
+
- type: pearson_cosine
|
70 |
+
value: .nan
|
71 |
+
name: Pearson Cosine
|
72 |
+
- type: spearman_cosine
|
73 |
+
value: .nan
|
74 |
+
name: Spearman Cosine
|
75 |
+
- type: pearson_manhattan
|
76 |
+
value: -0.038123417655342585
|
77 |
+
name: Pearson Manhattan
|
78 |
+
- type: spearman_manhattan
|
79 |
+
value: -0.030855987437062582
|
80 |
+
name: Spearman Manhattan
|
81 |
+
- type: pearson_euclidean
|
82 |
+
value: -0.0742298464837288
|
83 |
+
name: Pearson Euclidean
|
84 |
+
- type: spearman_euclidean
|
85 |
+
value: -0.016119009479880368
|
86 |
+
name: Spearman Euclidean
|
87 |
+
- type: pearson_dot
|
88 |
+
value: -0.053239384921975864
|
89 |
+
name: Pearson Dot
|
90 |
+
- type: spearman_dot
|
91 |
+
value: -0.03860610142560432
|
92 |
+
name: Spearman Dot
|
93 |
+
- type: pearson_max
|
94 |
+
value: .nan
|
95 |
+
name: Pearson Max
|
96 |
+
- type: spearman_max
|
97 |
+
value: .nan
|
98 |
+
name: Spearman Max
|
99 |
+
- task:
|
100 |
+
type: semantic-similarity
|
101 |
+
name: Semantic Similarity
|
102 |
+
dataset:
|
103 |
+
name: sts dev 512
|
104 |
+
type: sts-dev-512
|
105 |
+
metrics:
|
106 |
+
- type: pearson_cosine
|
107 |
+
value: .nan
|
108 |
+
name: Pearson Cosine
|
109 |
+
- type: spearman_cosine
|
110 |
+
value: .nan
|
111 |
+
name: Spearman Cosine
|
112 |
+
- type: pearson_manhattan
|
113 |
+
value: -0.040766255073950965
|
114 |
+
name: Pearson Manhattan
|
115 |
+
- type: spearman_manhattan
|
116 |
+
value: -0.028106086435826655
|
117 |
+
name: Spearman Manhattan
|
118 |
+
- type: pearson_euclidean
|
119 |
+
value: -0.076050553000047
|
120 |
+
name: Pearson Euclidean
|
121 |
+
- type: spearman_euclidean
|
122 |
+
value: -0.014573222092867504
|
123 |
+
name: Spearman Euclidean
|
124 |
+
- type: pearson_dot
|
125 |
+
value: -0.06110575151055097
|
126 |
+
name: Pearson Dot
|
127 |
+
- type: spearman_dot
|
128 |
+
value: -0.04818501881621991
|
129 |
+
name: Spearman Dot
|
130 |
+
- type: pearson_max
|
131 |
+
value: .nan
|
132 |
+
name: Pearson Max
|
133 |
+
- type: spearman_max
|
134 |
+
value: .nan
|
135 |
+
name: Spearman Max
|
136 |
+
- task:
|
137 |
+
type: semantic-similarity
|
138 |
+
name: Semantic Similarity
|
139 |
+
dataset:
|
140 |
+
name: sts dev 256
|
141 |
+
type: sts-dev-256
|
142 |
+
metrics:
|
143 |
+
- type: pearson_cosine
|
144 |
+
value: .nan
|
145 |
+
name: Pearson Cosine
|
146 |
+
- type: spearman_cosine
|
147 |
+
value: .nan
|
148 |
+
name: Spearman Cosine
|
149 |
+
- type: pearson_manhattan
|
150 |
+
value: -0.044210895435818166
|
151 |
+
name: Pearson Manhattan
|
152 |
+
- type: spearman_manhattan
|
153 |
+
value: -0.03253407490039325
|
154 |
+
name: Spearman Manhattan
|
155 |
+
- type: pearson_euclidean
|
156 |
+
value: -0.0529355152933442
|
157 |
+
name: Pearson Euclidean
|
158 |
+
- type: spearman_euclidean
|
159 |
+
value: -0.0338167301189937
|
160 |
+
name: Spearman Euclidean
|
161 |
+
- type: pearson_dot
|
162 |
+
value: 0.0887169006335579
|
163 |
+
name: Pearson Dot
|
164 |
+
- type: spearman_dot
|
165 |
+
value: 0.06886250477710897
|
166 |
+
name: Spearman Dot
|
167 |
+
- type: pearson_max
|
168 |
+
value: .nan
|
169 |
+
name: Pearson Max
|
170 |
+
- type: spearman_max
|
171 |
+
value: .nan
|
172 |
+
name: Spearman Max
|
173 |
+
- task:
|
174 |
+
type: semantic-similarity
|
175 |
+
name: Semantic Similarity
|
176 |
+
dataset:
|
177 |
+
name: sts dev 128
|
178 |
+
type: sts-dev-128
|
179 |
+
metrics:
|
180 |
+
- type: pearson_cosine
|
181 |
+
value: .nan
|
182 |
+
name: Pearson Cosine
|
183 |
+
- type: spearman_cosine
|
184 |
+
value: .nan
|
185 |
+
name: Spearman Cosine
|
186 |
+
- type: pearson_manhattan
|
187 |
+
value: -0.05321620243744594
|
188 |
+
name: Pearson Manhattan
|
189 |
+
- type: spearman_manhattan
|
190 |
+
value: -0.026531903856252148
|
191 |
+
name: Spearman Manhattan
|
192 |
+
- type: pearson_euclidean
|
193 |
+
value: -0.06064347235216407
|
194 |
+
name: Pearson Euclidean
|
195 |
+
- type: spearman_euclidean
|
196 |
+
value: -0.0270947004666721
|
197 |
+
name: Spearman Euclidean
|
198 |
+
- type: pearson_dot
|
199 |
+
value: 0.07199088437564892
|
200 |
+
name: Pearson Dot
|
201 |
+
- type: spearman_dot
|
202 |
+
value: 0.05552894816506978
|
203 |
+
name: Spearman Dot
|
204 |
+
- type: pearson_max
|
205 |
+
value: .nan
|
206 |
+
name: Pearson Max
|
207 |
+
- type: spearman_max
|
208 |
+
value: .nan
|
209 |
+
name: Spearman Max
|
210 |
+
- task:
|
211 |
+
type: semantic-similarity
|
212 |
+
name: Semantic Similarity
|
213 |
+
dataset:
|
214 |
+
name: sts dev 64
|
215 |
+
type: sts-dev-64
|
216 |
+
metrics:
|
217 |
+
- type: pearson_cosine
|
218 |
+
value: .nan
|
219 |
+
name: Pearson Cosine
|
220 |
+
- type: spearman_cosine
|
221 |
+
value: .nan
|
222 |
+
name: Spearman Cosine
|
223 |
+
- type: pearson_manhattan
|
224 |
+
value: -0.046922199302745354
|
225 |
+
name: Pearson Manhattan
|
226 |
+
- type: spearman_manhattan
|
227 |
+
value: -0.027530540631984835
|
228 |
+
name: Spearman Manhattan
|
229 |
+
- type: pearson_euclidean
|
230 |
+
value: -0.04930495975336398
|
231 |
+
name: Pearson Euclidean
|
232 |
+
- type: spearman_euclidean
|
233 |
+
value: -0.02287953412697089
|
234 |
+
name: Spearman Euclidean
|
235 |
+
- type: pearson_dot
|
236 |
+
value: 0.05851507366090909
|
237 |
+
name: Pearson Dot
|
238 |
+
- type: spearman_dot
|
239 |
+
value: 0.044913605667507114
|
240 |
+
name: Spearman Dot
|
241 |
+
- type: pearson_max
|
242 |
+
value: .nan
|
243 |
+
name: Pearson Max
|
244 |
+
- type: spearman_max
|
245 |
+
value: .nan
|
246 |
+
name: Spearman Max
|
247 |
+
- task:
|
248 |
+
type: semantic-similarity
|
249 |
+
name: Semantic Similarity
|
250 |
+
dataset:
|
251 |
+
name: sts test 768
|
252 |
+
type: sts-test-768
|
253 |
+
metrics:
|
254 |
+
- type: pearson_cosine
|
255 |
+
value: .nan
|
256 |
+
name: Pearson Cosine
|
257 |
+
- type: spearman_cosine
|
258 |
+
value: .nan
|
259 |
+
name: Spearman Cosine
|
260 |
+
- type: pearson_manhattan
|
261 |
+
value: 0.0005203243269627229
|
262 |
+
name: Pearson Manhattan
|
263 |
+
- type: spearman_manhattan
|
264 |
+
value: 0.007914891421418472
|
265 |
+
name: Spearman Manhattan
|
266 |
+
- type: pearson_euclidean
|
267 |
+
value: -0.008479099839233263
|
268 |
+
name: Pearson Euclidean
|
269 |
+
- type: spearman_euclidean
|
270 |
+
value: 0.0002449834909380018
|
271 |
+
name: Spearman Euclidean
|
272 |
+
- type: pearson_dot
|
273 |
+
value: 0.015253799995136243
|
274 |
+
name: Pearson Dot
|
275 |
+
- type: spearman_dot
|
276 |
+
value: -0.002544651953260673
|
277 |
+
name: Spearman Dot
|
278 |
+
- type: pearson_max
|
279 |
+
value: .nan
|
280 |
+
name: Pearson Max
|
281 |
+
- type: spearman_max
|
282 |
+
value: .nan
|
283 |
+
name: Spearman Max
|
284 |
+
- task:
|
285 |
+
type: semantic-similarity
|
286 |
+
name: Semantic Similarity
|
287 |
+
dataset:
|
288 |
+
name: sts test 512
|
289 |
+
type: sts-test-512
|
290 |
+
metrics:
|
291 |
+
- type: pearson_cosine
|
292 |
+
value: .nan
|
293 |
+
name: Pearson Cosine
|
294 |
+
- type: spearman_cosine
|
295 |
+
value: .nan
|
296 |
+
name: Spearman Cosine
|
297 |
+
- type: pearson_manhattan
|
298 |
+
value: -0.000985791968546407
|
299 |
+
name: Pearson Manhattan
|
300 |
+
- type: spearman_manhattan
|
301 |
+
value: 0.009210170664121263
|
302 |
+
name: Spearman Manhattan
|
303 |
+
- type: pearson_euclidean
|
304 |
+
value: -0.010968197464829785
|
305 |
+
name: Pearson Euclidean
|
306 |
+
- type: spearman_euclidean
|
307 |
+
value: 0.0006366521814203481
|
308 |
+
name: Spearman Euclidean
|
309 |
+
- type: pearson_dot
|
310 |
+
value: 0.030903954394043587
|
311 |
+
name: Pearson Dot
|
312 |
+
- type: spearman_dot
|
313 |
+
value: 0.0214169911509498
|
314 |
+
name: Spearman Dot
|
315 |
+
- type: pearson_max
|
316 |
+
value: .nan
|
317 |
+
name: Pearson Max
|
318 |
+
- type: spearman_max
|
319 |
+
value: .nan
|
320 |
+
name: Spearman Max
|
321 |
+
- task:
|
322 |
+
type: semantic-similarity
|
323 |
+
name: Semantic Similarity
|
324 |
+
dataset:
|
325 |
+
name: sts test 256
|
326 |
+
type: sts-test-256
|
327 |
+
metrics:
|
328 |
+
- type: pearson_cosine
|
329 |
+
value: .nan
|
330 |
+
name: Pearson Cosine
|
331 |
+
- type: spearman_cosine
|
332 |
+
value: .nan
|
333 |
+
name: Spearman Cosine
|
334 |
+
- type: pearson_manhattan
|
335 |
+
value: -0.008347426706014351
|
336 |
+
name: Pearson Manhattan
|
337 |
+
- type: spearman_manhattan
|
338 |
+
value: 0.008133437696668973
|
339 |
+
name: Spearman Manhattan
|
340 |
+
- type: pearson_euclidean
|
341 |
+
value: -0.01284332508912676
|
342 |
+
name: Pearson Euclidean
|
343 |
+
- type: spearman_euclidean
|
344 |
+
value: 0.006207692348050752
|
345 |
+
name: Spearman Euclidean
|
346 |
+
- type: pearson_dot
|
347 |
+
value: -0.10411841010392278
|
348 |
+
name: Pearson Dot
|
349 |
+
- type: spearman_dot
|
350 |
+
value: -0.10441611480429308
|
351 |
+
name: Spearman Dot
|
352 |
+
- type: pearson_max
|
353 |
+
value: .nan
|
354 |
+
name: Pearson Max
|
355 |
+
- type: spearman_max
|
356 |
+
value: .nan
|
357 |
+
name: Spearman Max
|
358 |
+
- task:
|
359 |
+
type: semantic-similarity
|
360 |
+
name: Semantic Similarity
|
361 |
+
dataset:
|
362 |
+
name: sts test 128
|
363 |
+
type: sts-test-128
|
364 |
+
metrics:
|
365 |
+
- type: pearson_cosine
|
366 |
+
value: .nan
|
367 |
+
name: Pearson Cosine
|
368 |
+
- type: spearman_cosine
|
369 |
+
value: .nan
|
370 |
+
name: Spearman Cosine
|
371 |
+
- type: pearson_manhattan
|
372 |
+
value: -0.007293947286825709
|
373 |
+
name: Pearson Manhattan
|
374 |
+
- type: spearman_manhattan
|
375 |
+
value: 0.012461130559236479
|
376 |
+
name: Spearman Manhattan
|
377 |
+
- type: pearson_euclidean
|
378 |
+
value: -0.013785631605643068
|
379 |
+
name: Pearson Euclidean
|
380 |
+
- type: spearman_euclidean
|
381 |
+
value: 0.008355374230034162
|
382 |
+
name: Spearman Euclidean
|
383 |
+
- type: pearson_dot
|
384 |
+
value: -0.07790382803601184
|
385 |
+
name: Pearson Dot
|
386 |
+
- type: spearman_dot
|
387 |
+
value: -0.08277939304968172
|
388 |
+
name: Spearman Dot
|
389 |
+
- type: pearson_max
|
390 |
+
value: .nan
|
391 |
+
name: Pearson Max
|
392 |
+
- type: spearman_max
|
393 |
+
value: .nan
|
394 |
+
name: Spearman Max
|
395 |
+
- task:
|
396 |
+
type: semantic-similarity
|
397 |
+
name: Semantic Similarity
|
398 |
+
dataset:
|
399 |
+
name: sts test 64
|
400 |
+
type: sts-test-64
|
401 |
+
metrics:
|
402 |
+
- type: pearson_cosine
|
403 |
+
value: .nan
|
404 |
+
name: Pearson Cosine
|
405 |
+
- type: spearman_cosine
|
406 |
+
value: .nan
|
407 |
+
name: Spearman Cosine
|
408 |
+
- type: pearson_manhattan
|
409 |
+
value: -0.012731573411777072
|
410 |
+
name: Pearson Manhattan
|
411 |
+
- type: spearman_manhattan
|
412 |
+
value: 0.003453137865023755
|
413 |
+
name: Spearman Manhattan
|
414 |
+
- type: pearson_euclidean
|
415 |
+
value: -0.013710254571378023
|
416 |
+
name: Pearson Euclidean
|
417 |
+
- type: spearman_euclidean
|
418 |
+
value: 0.0028389826642085166
|
419 |
+
name: Spearman Euclidean
|
420 |
+
- type: pearson_dot
|
421 |
+
value: -0.04900795414419644
|
422 |
+
name: Pearson Dot
|
423 |
+
- type: spearman_dot
|
424 |
+
value: -0.05520642056907742
|
425 |
+
name: Spearman Dot
|
426 |
+
- type: pearson_max
|
427 |
+
value: .nan
|
428 |
+
name: Pearson Max
|
429 |
+
- type: spearman_max
|
430 |
+
value: .nan
|
431 |
+
name: Spearman Max
|
432 |
+
---
|
433 |
+
|
434 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-large
|
435 |
+
|
436 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
437 |
+
|
438 |
+
## Model Details
|
439 |
+
|
440 |
+
### Model Description
|
441 |
+
- **Model Type:** Sentence Transformer
|
442 |
+
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
443 |
+
- **Maximum Sequence Length:** 512 tokens
|
444 |
+
- **Output Dimensionality:** 1024 tokens
|
445 |
+
- **Similarity Function:** Cosine Similarity
|
446 |
+
- **Training Dataset:**
|
447 |
+
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
|
448 |
+
- **Language:** en
|
449 |
+
<!-- - **License:** Unknown -->
|
450 |
+
|
451 |
+
### Model Sources
|
452 |
+
|
453 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
454 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
455 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
456 |
+
|
457 |
+
### Full Model Architecture
|
458 |
+
|
459 |
+
```
|
460 |
+
SentenceTransformer(
|
461 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
462 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
463 |
+
)
|
464 |
+
```
|
465 |
+
|
466 |
+
## Usage
|
467 |
+
|
468 |
+
### Direct Usage (Sentence Transformers)
|
469 |
+
|
470 |
+
First install the Sentence Transformers library:
|
471 |
+
|
472 |
+
```bash
|
473 |
+
pip install -U sentence-transformers
|
474 |
+
```
|
475 |
+
|
476 |
+
Then you can load this model and run inference.
|
477 |
+
```python
|
478 |
+
from sentence_transformers import SentenceTransformer
|
479 |
+
|
480 |
+
# Download from the 🤗 Hub
|
481 |
+
model = SentenceTransformer("dipteshkanojia/xlm-roberta-large-sts-matryoshka")
|
482 |
+
# Run inference
|
483 |
+
sentences = [
|
484 |
+
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
|
485 |
+
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
|
486 |
+
'A man plays the guitar.',
|
487 |
+
]
|
488 |
+
embeddings = model.encode(sentences)
|
489 |
+
print(embeddings.shape)
|
490 |
+
# [3, 1024]
|
491 |
+
|
492 |
+
# Get the similarity scores for the embeddings
|
493 |
+
similarities = model.similarity(embeddings, embeddings)
|
494 |
+
print(similarities.shape)
|
495 |
+
# [3, 3]
|
496 |
+
```
|
497 |
+
|
498 |
+
<!--
|
499 |
+
### Direct Usage (Transformers)
|
500 |
+
|
501 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
502 |
+
|
503 |
+
</details>
|
504 |
+
-->
|
505 |
+
|
506 |
+
<!--
|
507 |
+
### Downstream Usage (Sentence Transformers)
|
508 |
+
|
509 |
+
You can finetune this model on your own dataset.
|
510 |
+
|
511 |
+
<details><summary>Click to expand</summary>
|
512 |
+
|
513 |
+
</details>
|
514 |
+
-->
|
515 |
+
|
516 |
+
<!--
|
517 |
+
### Out-of-Scope Use
|
518 |
+
|
519 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
520 |
+
-->
|
521 |
+
|
522 |
+
## Evaluation
|
523 |
+
|
524 |
+
### Metrics
|
525 |
+
|
526 |
+
#### Semantic Similarity
|
527 |
+
* Dataset: `sts-dev-768`
|
528 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
529 |
+
|
530 |
+
| Metric | Value |
|
531 |
+
|:--------------------|:--------|
|
532 |
+
| pearson_cosine | nan |
|
533 |
+
| **spearman_cosine** | **nan** |
|
534 |
+
| pearson_manhattan | -0.0381 |
|
535 |
+
| spearman_manhattan | -0.0309 |
|
536 |
+
| pearson_euclidean | -0.0742 |
|
537 |
+
| spearman_euclidean | -0.0161 |
|
538 |
+
| pearson_dot | -0.0532 |
|
539 |
+
| spearman_dot | -0.0386 |
|
540 |
+
| pearson_max | nan |
|
541 |
+
| spearman_max | nan |
|
542 |
+
|
543 |
+
#### Semantic Similarity
|
544 |
+
* Dataset: `sts-dev-512`
|
545 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
546 |
+
|
547 |
+
| Metric | Value |
|
548 |
+
|:--------------------|:--------|
|
549 |
+
| pearson_cosine | nan |
|
550 |
+
| **spearman_cosine** | **nan** |
|
551 |
+
| pearson_manhattan | -0.0408 |
|
552 |
+
| spearman_manhattan | -0.0281 |
|
553 |
+
| pearson_euclidean | -0.0761 |
|
554 |
+
| spearman_euclidean | -0.0146 |
|
555 |
+
| pearson_dot | -0.0611 |
|
556 |
+
| spearman_dot | -0.0482 |
|
557 |
+
| pearson_max | nan |
|
558 |
+
| spearman_max | nan |
|
559 |
+
|
560 |
+
#### Semantic Similarity
|
561 |
+
* Dataset: `sts-dev-256`
|
562 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
563 |
+
|
564 |
+
| Metric | Value |
|
565 |
+
|:--------------------|:--------|
|
566 |
+
| pearson_cosine | nan |
|
567 |
+
| **spearman_cosine** | **nan** |
|
568 |
+
| pearson_manhattan | -0.0442 |
|
569 |
+
| spearman_manhattan | -0.0325 |
|
570 |
+
| pearson_euclidean | -0.0529 |
|
571 |
+
| spearman_euclidean | -0.0338 |
|
572 |
+
| pearson_dot | 0.0887 |
|
573 |
+
| spearman_dot | 0.0689 |
|
574 |
+
| pearson_max | nan |
|
575 |
+
| spearman_max | nan |
|
576 |
+
|
577 |
+
#### Semantic Similarity
|
578 |
+
* Dataset: `sts-dev-128`
|
579 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
580 |
+
|
581 |
+
| Metric | Value |
|
582 |
+
|:--------------------|:--------|
|
583 |
+
| pearson_cosine | nan |
|
584 |
+
| **spearman_cosine** | **nan** |
|
585 |
+
| pearson_manhattan | -0.0532 |
|
586 |
+
| spearman_manhattan | -0.0265 |
|
587 |
+
| pearson_euclidean | -0.0606 |
|
588 |
+
| spearman_euclidean | -0.0271 |
|
589 |
+
| pearson_dot | 0.072 |
|
590 |
+
| spearman_dot | 0.0555 |
|
591 |
+
| pearson_max | nan |
|
592 |
+
| spearman_max | nan |
|
593 |
+
|
594 |
+
#### Semantic Similarity
|
595 |
+
* Dataset: `sts-dev-64`
|
596 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
597 |
+
|
598 |
+
| Metric | Value |
|
599 |
+
|:--------------------|:--------|
|
600 |
+
| pearson_cosine | nan |
|
601 |
+
| **spearman_cosine** | **nan** |
|
602 |
+
| pearson_manhattan | -0.0469 |
|
603 |
+
| spearman_manhattan | -0.0275 |
|
604 |
+
| pearson_euclidean | -0.0493 |
|
605 |
+
| spearman_euclidean | -0.0229 |
|
606 |
+
| pearson_dot | 0.0585 |
|
607 |
+
| spearman_dot | 0.0449 |
|
608 |
+
| pearson_max | nan |
|
609 |
+
| spearman_max | nan |
|
610 |
+
|
611 |
+
#### Semantic Similarity
|
612 |
+
* Dataset: `sts-test-768`
|
613 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
614 |
+
|
615 |
+
| Metric | Value |
|
616 |
+
|:--------------------|:--------|
|
617 |
+
| pearson_cosine | nan |
|
618 |
+
| **spearman_cosine** | **nan** |
|
619 |
+
| pearson_manhattan | 0.0005 |
|
620 |
+
| spearman_manhattan | 0.0079 |
|
621 |
+
| pearson_euclidean | -0.0085 |
|
622 |
+
| spearman_euclidean | 0.0002 |
|
623 |
+
| pearson_dot | 0.0153 |
|
624 |
+
| spearman_dot | -0.0025 |
|
625 |
+
| pearson_max | nan |
|
626 |
+
| spearman_max | nan |
|
627 |
+
|
628 |
+
#### Semantic Similarity
|
629 |
+
* Dataset: `sts-test-512`
|
630 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
631 |
+
|
632 |
+
| Metric | Value |
|
633 |
+
|:--------------------|:--------|
|
634 |
+
| pearson_cosine | nan |
|
635 |
+
| **spearman_cosine** | **nan** |
|
636 |
+
| pearson_manhattan | -0.001 |
|
637 |
+
| spearman_manhattan | 0.0092 |
|
638 |
+
| pearson_euclidean | -0.011 |
|
639 |
+
| spearman_euclidean | 0.0006 |
|
640 |
+
| pearson_dot | 0.0309 |
|
641 |
+
| spearman_dot | 0.0214 |
|
642 |
+
| pearson_max | nan |
|
643 |
+
| spearman_max | nan |
|
644 |
+
|
645 |
+
#### Semantic Similarity
|
646 |
+
* Dataset: `sts-test-256`
|
647 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
648 |
+
|
649 |
+
| Metric | Value |
|
650 |
+
|:--------------------|:--------|
|
651 |
+
| pearson_cosine | nan |
|
652 |
+
| **spearman_cosine** | **nan** |
|
653 |
+
| pearson_manhattan | -0.0083 |
|
654 |
+
| spearman_manhattan | 0.0081 |
|
655 |
+
| pearson_euclidean | -0.0128 |
|
656 |
+
| spearman_euclidean | 0.0062 |
|
657 |
+
| pearson_dot | -0.1041 |
|
658 |
+
| spearman_dot | -0.1044 |
|
659 |
+
| pearson_max | nan |
|
660 |
+
| spearman_max | nan |
|
661 |
+
|
662 |
+
#### Semantic Similarity
|
663 |
+
* Dataset: `sts-test-128`
|
664 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
665 |
+
|
666 |
+
| Metric | Value |
|
667 |
+
|:--------------------|:--------|
|
668 |
+
| pearson_cosine | nan |
|
669 |
+
| **spearman_cosine** | **nan** |
|
670 |
+
| pearson_manhattan | -0.0073 |
|
671 |
+
| spearman_manhattan | 0.0125 |
|
672 |
+
| pearson_euclidean | -0.0138 |
|
673 |
+
| spearman_euclidean | 0.0084 |
|
674 |
+
| pearson_dot | -0.0779 |
|
675 |
+
| spearman_dot | -0.0828 |
|
676 |
+
| pearson_max | nan |
|
677 |
+
| spearman_max | nan |
|
678 |
+
|
679 |
+
#### Semantic Similarity
|
680 |
+
* Dataset: `sts-test-64`
|
681 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
682 |
+
|
683 |
+
| Metric | Value |
|
684 |
+
|:--------------------|:--------|
|
685 |
+
| pearson_cosine | nan |
|
686 |
+
| **spearman_cosine** | **nan** |
|
687 |
+
| pearson_manhattan | -0.0127 |
|
688 |
+
| spearman_manhattan | 0.0035 |
|
689 |
+
| pearson_euclidean | -0.0137 |
|
690 |
+
| spearman_euclidean | 0.0028 |
|
691 |
+
| pearson_dot | -0.049 |
|
692 |
+
| spearman_dot | -0.0552 |
|
693 |
+
| pearson_max | nan |
|
694 |
+
| spearman_max | nan |
|
695 |
+
|
696 |
+
<!--
|
697 |
+
## Bias, Risks and Limitations
|
698 |
+
|
699 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
700 |
+
-->
|
701 |
+
|
702 |
+
<!--
|
703 |
+
### Recommendations
|
704 |
+
|
705 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
706 |
+
-->
|
707 |
+
|
708 |
+
## Training Details
|
709 |
+
|
710 |
+
### Training Dataset
|
711 |
+
|
712 |
+
#### sentence-transformers/stsb
|
713 |
+
|
714 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
715 |
+
* Size: 5,749 training samples
|
716 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
717 |
+
* Approximate statistics based on the first 1000 samples:
|
718 |
+
| | sentence1 | sentence2 | score |
|
719 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
720 |
+
| type | string | string | float |
|
721 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 11.08 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
722 |
+
* Samples:
|
723 |
+
| sentence1 | sentence2 | score |
|
724 |
+
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
|
725 |
+
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
|
726 |
+
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
|
727 |
+
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
|
728 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
729 |
+
```json
|
730 |
+
{
|
731 |
+
"loss": "CoSENTLoss",
|
732 |
+
"matryoshka_dims": [
|
733 |
+
768,
|
734 |
+
512,
|
735 |
+
256,
|
736 |
+
128,
|
737 |
+
64
|
738 |
+
],
|
739 |
+
"matryoshka_weights": [
|
740 |
+
1,
|
741 |
+
1,
|
742 |
+
1,
|
743 |
+
1,
|
744 |
+
1
|
745 |
+
],
|
746 |
+
"n_dims_per_step": -1
|
747 |
+
}
|
748 |
+
```
|
749 |
+
|
750 |
+
### Evaluation Dataset
|
751 |
+
|
752 |
+
#### sentence-transformers/stsb
|
753 |
+
|
754 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
755 |
+
* Size: 1,500 evaluation samples
|
756 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
757 |
+
* Approximate statistics based on the first 1000 samples:
|
758 |
+
| | sentence1 | sentence2 | score |
|
759 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
760 |
+
| type | string | string | float |
|
761 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 16.55 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.5 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
762 |
+
* Samples:
|
763 |
+
| sentence1 | sentence2 | score |
|
764 |
+
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
|
765 |
+
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
|
766 |
+
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
|
767 |
+
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
|
768 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
769 |
+
```json
|
770 |
+
{
|
771 |
+
"loss": "CoSENTLoss",
|
772 |
+
"matryoshka_dims": [
|
773 |
+
768,
|
774 |
+
512,
|
775 |
+
256,
|
776 |
+
128,
|
777 |
+
64
|
778 |
+
],
|
779 |
+
"matryoshka_weights": [
|
780 |
+
1,
|
781 |
+
1,
|
782 |
+
1,
|
783 |
+
1,
|
784 |
+
1
|
785 |
+
],
|
786 |
+
"n_dims_per_step": -1
|
787 |
+
}
|
788 |
+
```
|
789 |
+
|
790 |
+
### Training Hyperparameters
|
791 |
+
#### Non-Default Hyperparameters
|
792 |
+
|
793 |
+
- `eval_strategy`: steps
|
794 |
+
- `per_device_train_batch_size`: 6
|
795 |
+
- `per_device_eval_batch_size`: 6
|
796 |
+
- `num_train_epochs`: 8
|
797 |
+
- `warmup_ratio`: 0.1
|
798 |
+
- `fp16`: True
|
799 |
+
|
800 |
+
#### All Hyperparameters
|
801 |
+
<details><summary>Click to expand</summary>
|
802 |
+
|
803 |
+
- `overwrite_output_dir`: False
|
804 |
+
- `do_predict`: False
|
805 |
+
- `eval_strategy`: steps
|
806 |
+
- `prediction_loss_only`: True
|
807 |
+
- `per_device_train_batch_size`: 6
|
808 |
+
- `per_device_eval_batch_size`: 6
|
809 |
+
- `per_gpu_train_batch_size`: None
|
810 |
+
- `per_gpu_eval_batch_size`: None
|
811 |
+
- `gradient_accumulation_steps`: 1
|
812 |
+
- `eval_accumulation_steps`: None
|
813 |
+
- `torch_empty_cache_steps`: None
|
814 |
+
- `learning_rate`: 5e-05
|
815 |
+
- `weight_decay`: 0.0
|
816 |
+
- `adam_beta1`: 0.9
|
817 |
+
- `adam_beta2`: 0.999
|
818 |
+
- `adam_epsilon`: 1e-08
|
819 |
+
- `max_grad_norm`: 1.0
|
820 |
+
- `num_train_epochs`: 8
|
821 |
+
- `max_steps`: -1
|
822 |
+
- `lr_scheduler_type`: linear
|
823 |
+
- `lr_scheduler_kwargs`: {}
|
824 |
+
- `warmup_ratio`: 0.1
|
825 |
+
- `warmup_steps`: 0
|
826 |
+
- `log_level`: passive
|
827 |
+
- `log_level_replica`: warning
|
828 |
+
- `log_on_each_node`: True
|
829 |
+
- `logging_nan_inf_filter`: True
|
830 |
+
- `save_safetensors`: True
|
831 |
+
- `save_on_each_node`: False
|
832 |
+
- `save_only_model`: False
|
833 |
+
- `restore_callback_states_from_checkpoint`: False
|
834 |
+
- `no_cuda`: False
|
835 |
+
- `use_cpu`: False
|
836 |
+
- `use_mps_device`: False
|
837 |
+
- `seed`: 42
|
838 |
+
- `data_seed`: None
|
839 |
+
- `jit_mode_eval`: False
|
840 |
+
- `use_ipex`: False
|
841 |
+
- `bf16`: False
|
842 |
+
- `fp16`: True
|
843 |
+
- `fp16_opt_level`: O1
|
844 |
+
- `half_precision_backend`: auto
|
845 |
+
- `bf16_full_eval`: False
|
846 |
+
- `fp16_full_eval`: False
|
847 |
+
- `tf32`: None
|
848 |
+
- `local_rank`: 0
|
849 |
+
- `ddp_backend`: None
|
850 |
+
- `tpu_num_cores`: None
|
851 |
+
- `tpu_metrics_debug`: False
|
852 |
+
- `debug`: []
|
853 |
+
- `dataloader_drop_last`: False
|
854 |
+
- `dataloader_num_workers`: 0
|
855 |
+
- `dataloader_prefetch_factor`: None
|
856 |
+
- `past_index`: -1
|
857 |
+
- `disable_tqdm`: False
|
858 |
+
- `remove_unused_columns`: True
|
859 |
+
- `label_names`: None
|
860 |
+
- `load_best_model_at_end`: False
|
861 |
+
- `ignore_data_skip`: False
|
862 |
+
- `fsdp`: []
|
863 |
+
- `fsdp_min_num_params`: 0
|
864 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
865 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
866 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
867 |
+
- `deepspeed`: None
|
868 |
+
- `label_smoothing_factor`: 0.0
|
869 |
+
- `optim`: adamw_torch
|
870 |
+
- `optim_args`: None
|
871 |
+
- `adafactor`: False
|
872 |
+
- `group_by_length`: False
|
873 |
+
- `length_column_name`: length
|
874 |
+
- `ddp_find_unused_parameters`: None
|
875 |
+
- `ddp_bucket_cap_mb`: None
|
876 |
+
- `ddp_broadcast_buffers`: False
|
877 |
+
- `dataloader_pin_memory`: True
|
878 |
+
- `dataloader_persistent_workers`: False
|
879 |
+
- `skip_memory_metrics`: True
|
880 |
+
- `use_legacy_prediction_loop`: False
|
881 |
+
- `push_to_hub`: False
|
882 |
+
- `resume_from_checkpoint`: None
|
883 |
+
- `hub_model_id`: None
|
884 |
+
- `hub_strategy`: every_save
|
885 |
+
- `hub_private_repo`: False
|
886 |
+
- `hub_always_push`: False
|
887 |
+
- `gradient_checkpointing`: False
|
888 |
+
- `gradient_checkpointing_kwargs`: None
|
889 |
+
- `include_inputs_for_metrics`: False
|
890 |
+
- `eval_do_concat_batches`: True
|
891 |
+
- `fp16_backend`: auto
|
892 |
+
- `push_to_hub_model_id`: None
|
893 |
+
- `push_to_hub_organization`: None
|
894 |
+
- `mp_parameters`:
|
895 |
+
- `auto_find_batch_size`: False
|
896 |
+
- `full_determinism`: False
|
897 |
+
- `torchdynamo`: None
|
898 |
+
- `ray_scope`: last
|
899 |
+
- `ddp_timeout`: 1800
|
900 |
+
- `torch_compile`: False
|
901 |
+
- `torch_compile_backend`: None
|
902 |
+
- `torch_compile_mode`: None
|
903 |
+
- `dispatch_batches`: None
|
904 |
+
- `split_batches`: None
|
905 |
+
- `include_tokens_per_second`: False
|
906 |
+
- `include_num_input_tokens_seen`: False
|
907 |
+
- `neftune_noise_alpha`: None
|
908 |
+
- `optim_target_modules`: None
|
909 |
+
- `batch_eval_metrics`: False
|
910 |
+
- `eval_on_start`: False
|
911 |
+
- `eval_use_gather_object`: False
|
912 |
+
- `batch_sampler`: batch_sampler
|
913 |
+
- `multi_dataset_batch_sampler`: proportional
|
914 |
+
|
915 |
+
</details>
|
916 |
+
|
917 |
+
### Training Logs
|
918 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
919 |
+
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
920 |
+
| 1.0417 | 500 | 21.1353 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
921 |
+
| 2.0833 | 1000 | 20.7941 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
922 |
+
| 3.125 | 1500 | 20.7823 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
923 |
+
| 4.1667 | 2000 | 20.781 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
924 |
+
| 5.2083 | 2500 | 20.7707 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
925 |
+
| 6.25 | 3000 | 20.7661 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
926 |
+
| 7.2917 | 3500 | 20.7719 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
927 |
+
| 8.0 | 3840 | - | - | - | - | - | - | - | nan | nan | nan | nan | nan |
|
928 |
+
|
929 |
+
|
930 |
+
### Framework Versions
|
931 |
+
- Python: 3.9.19
|
932 |
+
- Sentence Transformers: 3.1.0.dev0
|
933 |
+
- Transformers: 4.44.2
|
934 |
+
- PyTorch: 2.4.1+cu121
|
935 |
+
- Accelerate: 0.34.2
|
936 |
+
- Datasets: 2.21.0
|
937 |
+
- Tokenizers: 0.19.1
|
938 |
+
|
939 |
+
## Citation
|
940 |
+
|
941 |
+
### BibTeX
|
942 |
+
|
943 |
+
#### Sentence Transformers
|
944 |
+
```bibtex
|
945 |
+
@inproceedings{reimers-2019-sentence-bert,
|
946 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
947 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
948 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
949 |
+
month = "11",
|
950 |
+
year = "2019",
|
951 |
+
publisher = "Association for Computational Linguistics",
|
952 |
+
url = "https://arxiv.org/abs/1908.10084",
|
953 |
+
}
|
954 |
+
```
|
955 |
+
|
956 |
+
#### MatryoshkaLoss
|
957 |
+
```bibtex
|
958 |
+
@misc{kusupati2024matryoshka,
|
959 |
+
title={Matryoshka Representation Learning},
|
960 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
961 |
+
year={2024},
|
962 |
+
eprint={2205.13147},
|
963 |
+
archivePrefix={arXiv},
|
964 |
+
primaryClass={cs.LG}
|
965 |
+
}
|
966 |
+
```
|
967 |
+
|
968 |
+
#### CoSENTLoss
|
969 |
+
```bibtex
|
970 |
+
@online{kexuefm-8847,
|
971 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
972 |
+
author={Su Jianlin},
|
973 |
+
year={2022},
|
974 |
+
month={Jan},
|
975 |
+
url={https://kexue.fm/archives/8847},
|
976 |
+
}
|
977 |
+
```
|
978 |
+
|
979 |
+
<!--
|
980 |
+
## Glossary
|
981 |
+
|
982 |
+
*Clearly define terms in order to be accessible across audiences.*
|
983 |
+
-->
|
984 |
+
|
985 |
+
<!--
|
986 |
+
## Model Card Authors
|
987 |
+
|
988 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
989 |
+
-->
|
990 |
+
|
991 |
+
<!--
|
992 |
+
## Model Card Contact
|
993 |
+
|
994 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
995 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.44.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0.dev0",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60f5c9a0442025429e327c478b39b65da049485680fb689cc497ec710002388c
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|