--- language: en license: mit base_model: distilbert/distilbert-base-uncased tags: - text-classification - distilbert-base-uncased datasets: - disham993/ElectricalDeviceFeedbackBalanced metrics: - epoch: 1.0 - eval_f1: 0.8353275880967258 - eval_accuracy: 0.856508875739645 - eval_runtime: 0.4632 - eval_samples_per_second: 2918.69 - eval_steps_per_second: 47.493 --- # disham993/electrical-classification-distilbert-base-uncased ## Model description This model is fine-tuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) for text-classification tasks. ## Training Data The model was trained on the disham993/ElectricalDeviceFeedbackBalanced dataset. ## Model Details - **Base Model:** distilbert/distilbert-base-uncased - **Task:** text-classification - **Language:** en - **Dataset:** disham993/ElectricalDeviceFeedbackBalanced ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_f1: 0.8353275880967258\n- eval_accuracy: 0.856508875739645\n- eval_runtime: 0.4632\n- eval_samples_per_second: 2918.69\n- eval_steps_per_second: 47.493 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-classification-distilbert-base-uncased") model = AutoModel.from_pretrained("disham993/electrical-classification-distilbert-base-uncased") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2025-01-05