--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: disi-unibo-nlp results: [] datasets: - disi-unibo-nlp/foodex2-clean --- # DeBERTa FoodEx2 Coder This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the **train_task1** split of the dataset [foodex2-clean](). It achieves the following results on the evaluation set: - Loss: 0.0548 - Accuracy: 0.9822 - F1: 0.8507 - Precision: 0.9301 - Recall: 0.7838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.124 | 0.2899 | 1000 | 0.1032 | 0.9671 | 0.7090 | 0.8324 | 0.6174 | | 0.1004 | 0.5799 | 2000 | 0.0855 | 0.9721 | 0.7551 | 0.8769 | 0.6631 | | 0.0858 | 0.8698 | 3000 | 0.0737 | 0.9757 | 0.7873 | 0.9102 | 0.6937 | | 0.0736 | 1.1598 | 4000 | 0.0696 | 0.9786 | 0.8196 | 0.9031 | 0.7502 | | 0.0696 | 1.4497 | 5000 | 0.0639 | 0.9795 | 0.8294 | 0.8996 | 0.7694 | | 0.068 | 1.7396 | 6000 | 0.0606 | 0.9812 | 0.8401 | 0.9385 | 0.7604 | | 0.0634 | 2.0296 | 7000 | 0.0593 | 0.9809 | 0.8414 | 0.9123 | 0.7808 | | 0.0565 | 2.3195 | 8000 | 0.0568 | 0.9820 | 0.8485 | 0.9318 | 0.7790 | | 0.0584 | 2.6095 | 9000 | 0.0553 | 0.9822 | 0.8512 | 0.9296 | 0.7850 | | 0.0568 | 2.8994 | 10000 | 0.0548 | 0.9822 | 0.8507 | 0.9301 | 0.7838 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0