File size: 19,418 Bytes
c691cea d7299c4 c691cea 80fe97b c691cea 75d9c92 c691cea d7299c4 c691cea 9b90ffb c691cea c3b2245 c691cea 1a7397f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
---
language:
- en
tags:
- audio
- automatic-speech-recognition
- transformers.js
widget:
- example_title: LibriSpeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: LibriSpeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
pipeline_tag: automatic-speech-recognition
license: mit
library_name: transformers
---
# Distil-Whisper: distil-large-v2
Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
It is a distilled version of the Whisper model that is **6 times faster**, 49% smaller, and performs
**within 1% WER** on out-of-distribution evaluation sets. This is the repository for distil-large-v2,
a distilled variant of [Whisper large-v2](https://huggingface.co/openai/whisper-large-v2).
| Model | Params / M | Rel. Latency | Short-Form WER | Long-Form WER |
|----------------------------------------------------------------------------|------------|--------------|----------------|---------------|
| [large-v2](https://huggingface.co/openai/whisper-large-v2) | 1550 | 1.0 | **9.1** | 11.7 |
| | | | | |
| [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) | 756 | 5.8 | 10.1 | **11.6** |
| [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) | **394** | **6.8** | 11.1 | 12.4 |
**Note:** Distil-Whisper is currently only available for English speech recognition. Multilingual support will be provided in a follow-up.
## Usage
Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first
install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy
audio dataset from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade transformers accelerate datasets[audio]
```
### Short-Form Transcription
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe short-form audio files as follows:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v2"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```diff
- result = pipe(sample)
+ result = pipe("audio.mp3")
```
### Long-Form Transcription
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files. In practice, this chunked long-form algorithm
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
is optimal. To activate batching, pass the argument `batch_size`:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v2"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
<!---
**Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example:
```python
result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav")
```
--->
### Speculative Decoding
Distil-Whisper can be used as an assistant model to Whisper for speculative decoding. Speculative decoding mathematically
ensures the exact same outputs as Whisper are obtained while being 2 times faster. This makes it the perfect drop-in
replacement for existing Whisper pipelines, since the same outputs are guaranteed.
In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
specify it as the "assistant model" for generation:
```python
from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor
import torch
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
assistant_model_id = "distil-whisper/distil-large-v2"
assistant_model = AutoModelForCausalLM.from_pretrained(
assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
assistant_model.to(device)
model_id = "openai/whisper-large-v2"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
generate_kwargs={"assistant_model": assistant_model},
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
## Additional Speed & Memory Improvements
You can apply additional speed and memory improvements to Distil-Whisper which we cover in the following.
### Flash Attention
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU allows for it.
To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
```
pip install flash-attn --no-build-isolation
```
and then all you have to do is to pass `use_flash_attention_2=True` to `from_pretrained`:
```diff
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=True)
```
### Torch Scale-Product-Attention (SDPA)
If your GPU does not support Flash Attention, we recommend making use of [BetterTransformers](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#bettertransformer).
To do so, you first need to install optimum:
```
pip install --upgrade optimum
```
And then convert your model to a "BetterTransformer" model before using it:
```diff
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
+ model = model.to_bettertransformer()
```
### 8bit & 4bit Quantization
Coming soon ...
### Candle
Coming soon ...
### Whisper.cpp
Coming soon ...
### Running Whisper in `openai/whisper`
Coming soon ...
### Transformers.js
```js
import { pipeline } from '@xenova/transformers';
let transcriber = await pipeline('automatic-speech-recognition', 'distil-whisper/distil-large-v2');
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
let output = await transcriber(url);
// { text: " And so, my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." }
```
See the [docs](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline) for more information.
*Note:* Due to the large model size, we recommend running this model server-side with [Node.js](https://huggingface.co/docs/transformers.js/guides/node-audio-processing) (instead of in-browser).
## Model Details
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all
previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder
is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of
total inference time. Thus, to optimise for latency, the focus should be on minimising the inference time of the decoder.
To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed.
The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training.
The student's decoder consists of only two decoder layers, which are initialised from the first and last decoder layer of
the teacher (shown in red). All other decoder layers of the teacher are discarded. The model is then trained on a weighted sum
of the KL divergence and pseudo-label loss terms.
<p align="center">
<img src="https://huggingface.co/datasets/distil-whisper/figures/resolve/main/architecture.png?raw=true" width="600"/>
</p>
## Evaluation
The following code-snippets demonstrates how to evaluate the Distil-Whisper model on the LibriSpeech validation.clean
dataset with [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet), meaning no
audio data has to be downloaded to your local device.
First, we need to install the required packages, including 🤗 Datasets to stream and load the audio data, and 🤗 Evaluate to
perform the WER calculation:
```bash
pip install --upgrade pip
pip install --upgrade transformers datasets[audio] evaluate jiwer
```
Evaluation can then be run end-to-end with the following example:
```python
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from datasets import load_dataset
from evaluate import load
import torch
from tqdm import tqdm
# define our torch configuration
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v2"
# load the model + processor
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True, low_cpu_mem_usage=True)
model = model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
# load the dataset with streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# define the evaluation metric
wer_metric = load("wer")
normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer)
def inference(batch):
# 1. Pre-process the audio data to log-mel spectrogram inputs
audio = [sample["array"] for sample in batch["audio"]]
input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features
input_features = input_features.to(device, dtype=torch_dtype)
# 2. Auto-regressively generate the predicted token ids
pred_ids = model.generate(input_features, max_new_tokens=128, language="en", task="transcribe")
# 3. Decode the token ids to the final transcription
batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
batch["reference"] = batch["text"]
return batch
dataset = dataset.map(function=inference, batched=True, batch_size=16)
all_transcriptions = []
all_references = []
# iterate over the dataset and run inference
for i, result in tqdm(enumerate(dataset), desc="Evaluating..."):
all_transcriptions.append(result["transcription"])
all_references.append(result["reference"])
# normalize predictions and references
all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions]
all_references = [normalizer(reference) for reference in all_references]
# compute the WER metric
wer = 100 * wer_metric.compute(predictions=all_transcriptions, references=all_references)
print(wer)
```
**Print Output:**
```
2.983685535968466
```
## Intended Use
Distil-Whisper is intended to be a drop-in replacement for Whisper on English speech recognition. In particular, it
achieves comparable WER results over out-of-distribution test data, while being 6x faster over both short and long-form
audio.
## Data
Distil-Whisper is trained on 22,000 hours of audio data from 9 open-source, permissively licensed speech datasets on the
Hugging Face Hub:
| Dataset | Size / h | Speakers | Domain | Licence |
|-----------------------------------------------------------------------------------------|----------|----------|-----------------------------|-----------------|
| [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) | 12,000 | unknown | Internet Archive | CC-BY-SA-4.0 |
| [Common Voice 13](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) | 3,000 | unknown | Narrated Wikipedia | CC0-1.0 |
| [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 2,500 | unknown | Audiobook, podcast, YouTube | apache-2.0 |
| Fisher | 1,960 | 11,900 | Telephone conversations | LDC |
| [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | 960 | 2,480 | Audiobooks | CC-BY-4.0 |
| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 540 | 1,310 | European Parliament | CC0 |
| [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | 450 | 2,030 | TED talks | CC-BY-NC-ND 3.0 |
| SwitchBoard | 260 | 540 | Telephone conversations | LDC |
| [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | 100 | unknown | Meetings | CC-BY-4.0 |
||||||
| **Total** | 21,770 | 18,260+ | | |
The combined dataset spans 10 distinct domains and over 50k speakers. The diversity of this dataset is crucial to ensuring
the distilled model is robust to audio distributions and noise.
The audio data is then pseudo-labelled using the Whisper large-v2 model: we use Whisper to generate predictions for all
the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the
transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.
## WER Filter
The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on
accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
a specified threshold, we discard the training example. Otherwise, we keep it for training.
Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter for improving downstream performance
of the distilled model. We also partially attribute Distil-Whisper's robustness to hallucinations to this filter.
## Training
The model was trained for 80,000 optimisation steps (or eight epochs). The Tensorboard training logs can be found under: https://huggingface.co/distil-whisper/distil-large-v2/tensorboard?params=scalars#frame
## Results
The distilled model performs to within 1% WER of Whisper on out-of-distribution (OOD) short-form audio, and outperforms Whisper
by 0.1% on OOD long-form audio. This performance gain is attributed to lower hallucinations.
For a detailed per-dataset breakdown of the evaluation results, refer to Tables 16 and 17 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)
Distil-Whisper is also evaluated on the [ESB benchmark](https://arxiv.org/abs/2210.13352) datasets as part of the [OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard),
where it performs to within 0.2% WER of Whisper.
## Reproducing Distil-Whisper
Training and evaluation code to reproduce Distil-Whisper will be made available on the Distil-Whisper repository: https://github.com/huggingface/distil-whisper
## Citation
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
```
@misc{gandhi2023distilwhisper,
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
year={2023},
eprint={2311.00430},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Acknowledgements
* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v2) and [original codebase](https://github.com/openai/whisper)
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration
* Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) programme for Cloud TPU v4s
* [`@rsonavane`](https://huggingface.co/rsonavane/distil-whisper-large-v2-8-ls) for releasing an early iteration of Distil-Whisper on the LibriSpeech dataset
|