End of training
Browse files
README.md
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: HuggingFaceTB/SmolLM-135M
|
3 |
+
datasets:
|
4 |
+
- wikimedia/wikipedia
|
5 |
+
library_name: Distily
|
6 |
+
license: creativeml-openrail-m
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
- Distily
|
10 |
+
base_model_relation: finetune
|
11 |
+
model-index:
|
12 |
+
- name: distily_distsmollm_max_length
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Summary
|
18 |
+
|
19 |
+
Distilled with [Distily](https://github.com/lapp0/distily) library
|
20 |
+
using teacher model [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M)
|
21 |
+
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
|
22 |
+
|
23 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
24 |
+
should probably proofread and complete it, then remove this comment.
|
25 |
+
|
26 |
+
# Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
# Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
-->
|
34 |
+
|
35 |
+
# Model Architecture:
|
36 |
+
- **Architecture**: `LlamaForCausalLM`
|
37 |
+
- **Total Parameters**: 81,413,568
|
38 |
+
- **Data Type (dtype)**: torch.float32
|
39 |
+
- **Model Size**: 0.30 GB
|
40 |
+
|
41 |
+
<details>
|
42 |
+
<summary>Student Model Details</summary>
|
43 |
+
|
44 |
+
```
|
45 |
+
LlamaForCausalLM(
|
46 |
+
(model): LlamaModel(
|
47 |
+
(embed_tokens): Embedding(49152, 576)
|
48 |
+
(layers): ModuleList(
|
49 |
+
(0-14): 15 x LlamaDecoderLayer(
|
50 |
+
(self_attn): LlamaSdpaAttention(
|
51 |
+
(q_proj): Linear(in_features=576, out_features=576, bias=False)
|
52 |
+
(k_proj): Linear(in_features=576, out_features=192, bias=False)
|
53 |
+
(v_proj): Linear(in_features=576, out_features=192, bias=False)
|
54 |
+
(o_proj): Linear(in_features=576, out_features=576, bias=False)
|
55 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
56 |
+
)
|
57 |
+
(mlp): LigerSwiGLUMLP(
|
58 |
+
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
|
59 |
+
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
|
60 |
+
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
|
61 |
+
)
|
62 |
+
(input_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
63 |
+
(post_attention_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(norm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
67 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
68 |
+
)
|
69 |
+
(lm_head): Linear(in_features=576, out_features=49152, bias=False)
|
70 |
+
)
|
71 |
+
```
|
72 |
+
|
73 |
+
</details>
|
74 |
+
<br/>
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# Resource Usage
|
79 |
+
|
80 |
+
- Max Train VRAM Use: 3.7488 GB
|
81 |
+
- Available VRAM: 23.4329 GB
|
82 |
+
- GPUs:
|
83 |
+
- 1x NVIDIA GeForce RTX 4090
|
84 |
+
- CPUs: 64
|
85 |
+
- CPU Memory: 251.7299 GB
|
86 |
+
- CPU Memory Bandwidth: 1600 GB/s
|
87 |
+
|
88 |
+
# Distillation (Teacher -> Student) Architecture Difference:
|
89 |
+
|
90 |
+
- **Architecture**: `LlamaForCausalLM` -> `LlamaForCausalLM`
|
91 |
+
- **Total Parameters**: 134,515,008 -> 81,413,568
|
92 |
+
- **Data Type (dtype)**: torch.float32 -> torch.float32
|
93 |
+
- **Model Size**: 0.25 GB -> 0.30 GB
|
94 |
+
|
95 |
+
<details>
|
96 |
+
<summary>Module Diff Details</summary>
|
97 |
+
|
98 |
+
```diff
|
99 |
+
--- teacher model modules
|
100 |
+
+++ student model modules
|
101 |
+
@@ -2,7 +2,7 @@
|
102 |
+
(model): LlamaModel(
|
103 |
+
(embed_tokens): Embedding(49152, 576)
|
104 |
+
(layers): ModuleList(
|
105 |
+
- (0-29): 30 x LlamaDecoderLayer(
|
106 |
+
+ (0-14): 15 x LlamaDecoderLayer(
|
107 |
+
(self_attn): LlamaSdpaAttention(
|
108 |
+
(q_proj): Linear(in_features=576, out_features=576, bias=False)
|
109 |
+
(k_proj): Linear(in_features=576, out_features=192, bias=False)
|
110 |
+
@@ -10,17 +10,16 @@
|
111 |
+
(o_proj): Linear(in_features=576, out_features=576, bias=False)
|
112 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
113 |
+
)
|
114 |
+
- (mlp): LlamaMLP(
|
115 |
+
+ (mlp): LigerSwiGLUMLP(
|
116 |
+
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
|
117 |
+
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
|
118 |
+
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
|
119 |
+
- (act_fn): SiLU()
|
120 |
+
)
|
121 |
+
- (input_layernorm): LlamaRMSNorm((576,), eps=1e-05)
|
122 |
+
- (post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05)
|
123 |
+
+ (input_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
124 |
+
+ (post_attention_layernorm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
125 |
+
)
|
126 |
+
)
|
127 |
+
- (norm): LlamaRMSNorm((576,), eps=1e-05)
|
128 |
+
+ (norm): LigerRMSNorm((576,), eps=1e-05, offset=0.0)
|
129 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
130 |
+
)
|
131 |
+
(lm_head): Linear(in_features=576, out_features=49152, bias=False)
|
132 |
+
|
133 |
+
```
|
134 |
+
|
135 |
+
</details>
|
136 |
+
<br/>
|
137 |
+
|
138 |
+
# Train Dataset
|
139 |
+
Trained on 374,508,910 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.
|
140 |
+
|
141 |
+
- Num Samples: `998,000`
|
142 |
+
- Subset: `20231101.en`
|
143 |
+
- Split: `train`
|
144 |
+
|
145 |
+
|
146 |
+
# Training Objective
|
147 |
+
|
148 |
+
```
|
149 |
+
DistillationObjective(
|
150 |
+
logits_loss_component=LossComponent(
|
151 |
+
weight=1,
|
152 |
+
loss_fn='kl'
|
153 |
+
),
|
154 |
+
hs_loss_component=LossComponent(
|
155 |
+
weight=0
|
156 |
+
),
|
157 |
+
attn_loss_component=LossComponent(
|
158 |
+
weight=0
|
159 |
+
)
|
160 |
+
)
|
161 |
+
```
|
162 |
+
|
163 |
+
# Hyperparameters
|
164 |
+
The following hyperparameters were used during training:
|
165 |
+
|
166 |
+
<details>
|
167 |
+
<summary>Expand</summary>
|
168 |
+
|
169 |
+
- learning_rate: `0.0002`
|
170 |
+
- train_batch_size: `4`
|
171 |
+
- eval_batch_size: `2`
|
172 |
+
- seed: `42`
|
173 |
+
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
|
174 |
+
- lr_scheduler_type: `polynomial`
|
175 |
+
- num_epochs: `1.0`
|
176 |
+
- distillation_objective: `DistillationObjective(
|
177 |
+
logits_loss_component=LossComponent(
|
178 |
+
weight=1,
|
179 |
+
loss_fn='kl'
|
180 |
+
),
|
181 |
+
hs_loss_component=LossComponent(
|
182 |
+
weight=0
|
183 |
+
),
|
184 |
+
attn_loss_component=LossComponent(
|
185 |
+
weight=0
|
186 |
+
)
|
187 |
+
)`
|
188 |
+
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x72cfc8ab4af0>`
|
189 |
+
- student_model_name_or_path: `None`
|
190 |
+
- student_config_name_or_path: `None`
|
191 |
+
- student_model_config: `{'num_hidden_layers': 15}`
|
192 |
+
- reinitialize_weights: `None`
|
193 |
+
- copy_teacher_modules: `[('lm_head', False)]`
|
194 |
+
- student_model_as_bitnet: `False`
|
195 |
+
- student_use_liger_kernel: `True`
|
196 |
+
- teacher_model_name_or_path: `HuggingFaceTB/SmolLM-135M`
|
197 |
+
- teacher_load_in_8bit: `False`
|
198 |
+
- teacher_load_in_4bit: `False`
|
199 |
+
- dataset_uri: `wikimedia/wikipedia`
|
200 |
+
- dataset_subset: `20231101.en`
|
201 |
+
- dataset_split: `train`
|
202 |
+
- dataset_column_name: `text`
|
203 |
+
- dataset_sample_size: `1000000`
|
204 |
+
- dataset_max_seq_length: `512`
|
205 |
+
- dataset_test_size: `0.002`
|
206 |
+
- dataset_shuffle: `False`
|
207 |
+
- dataset_shuffle_seed: `42`
|
208 |
+
- dataset_trust_remote_code: `False`
|
209 |
+
- gradient_accumulation_steps: `1`
|
210 |
+
- weight_decay: `0.0`
|
211 |
+
- max_grad_norm: `1.0`
|
212 |
+
- warmup_ratio: `0.0`
|
213 |
+
- warmup_steps: `0`
|
214 |
+
- gradient_checkpointing: `True`
|
215 |
+
|
216 |
+
</details>
|
217 |
+
<br/>
|
218 |
+
|
219 |
+
|
220 |
+
# Framework Versions
|
221 |
+
- Distily 0.5.0
|
222 |
+
- Transformers 4.45.0.dev0
|
223 |
+
- Pytorch 2.5.0.dev20240910+cu121
|
224 |
+
- Datasets 2.21.0
|
benchmarks.shelve.bak
ADDED
File without changes
|
benchmarks.shelve.dat
ADDED
File without changes
|
benchmarks.shelve.dir
ADDED
File without changes
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.45.0.dev0",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
logs/dataset_max_seq_length=512, per_device_train_batch_size=4, run_name=baseline/events.out.tfevents.1726314750.1c1a426a2fee
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22fd6a40806bbb1a00691f8f22cf6f35fa7d770f4a36984032e9f3a999a9082e
|
3 |
+
size 529
|