--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.525 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4174 - Accuracy: 0.525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0777 | 1.0 | 10 | 2.0583 | 0.1812 | | 2.0139 | 2.0 | 20 | 1.9850 | 0.2687 | | 1.8654 | 3.0 | 30 | 1.8583 | 0.3063 | | 1.7044 | 4.0 | 40 | 1.7314 | 0.3937 | | 1.5957 | 5.0 | 50 | 1.6253 | 0.4125 | | 1.5016 | 6.0 | 60 | 1.5818 | 0.3812 | | 1.4279 | 7.0 | 70 | 1.5329 | 0.45 | | 1.347 | 8.0 | 80 | 1.5491 | 0.425 | | 1.3019 | 9.0 | 90 | 1.4662 | 0.5125 | | 1.236 | 10.0 | 100 | 1.4375 | 0.5 | | 1.1922 | 11.0 | 110 | 1.4149 | 0.5062 | | 1.1551 | 12.0 | 120 | 1.4065 | 0.5125 | | 1.1501 | 13.0 | 130 | 1.3861 | 0.5125 | | 1.1258 | 14.0 | 140 | 1.3940 | 0.5312 | | 1.1036 | 15.0 | 150 | 1.4022 | 0.5125 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1