File size: 3,255 Bytes
eceaa63
d294467
 
 
 
 
 
 
eceaa63
 
d294467
 
eceaa63
d294467
 
eceaa63
d294467
 
 
 
 
 
eceaa63
d294467
 
eceaa63
d294467
 
 
 
 
eceaa63
d294467
 
 
eceaa63
d294467
 
 
eceaa63
d294467
 
 
 
 
eceaa63
d294467
 
 
 
 
 
eceaa63
d294467
 
 
 
eceaa63
d294467
 
 
 
 
 
eceaa63
d294467
 
 
 
 
 
 
 
eceaa63
d294467
 
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
 
 
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
eceaa63
d294467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eceaa63
d294467
 
 
 
 
 
eceaa63
 
d294467
eceaa63
d294467
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
base_model: diwank/cryptgpt
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cryptgpt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
# See:
# - https://github.com/karpathy/nanoGPT/blob/master/config/train_gpt2.py#L1
# - https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/tiny-llama/pretrain.yml#L14
# - https://github.com/karpathy/nanoGPT/blob/master/train.py#L35

base_model: diwank/cryptgpt
hub_model_id: diwank/cryptgpt

model_type: GPT2LMHeadModel
tokenizer_type: AutoTokenizer
trust_remote_code: true  # required for CryptGPTTokenizer
resize_token_embeddings_to_32x: true
output_dir: ./outputs/model-out

datasets:
  - path: diwank/encrypted-openwebtext
    type: completion

dataset_prepared_path: ./cryptgpt-prepared-dataset
val_set_size: 0.04
shuffle_merged_datasets: false

sequence_len: 1024
pad_to_sequence_len: true
sample_packing: false
pretrain_multipack_attn: false
train_on_inputs: true

gradient_accumulation_steps: 1
micro_batch_size: 64
optimizer: adamw_bnb_8bit
adam_beta1: 0.9
adam_beta2: 0.95
seed: 42

lr_scheduler: cosine
learning_rate: 6e-4
cosine_min_lr_ratio: 0.1  # min: 6e-5
weight_decay: 0.1

bf16: auto
tf32: true
flash_attention: true
torch_compile: true
gradient_checkpointing: false
deepspeed: deepspeed_configs/zero2.json

max_steps: 1200000
eval_steps: 12000
save_steps: 12000
auto_resume_from_checkpoints: true
logging_steps: 1
eval_max_new_tokens: 128
eval_causal_lm_metrics: 
  - sacrebleu

wandb_project: cryptgpt-0.1
wandb_name: cryptgpt-run-07

```

</details><br>

# cryptgpt

This model is a fine-tuned version of [diwank/cryptgpt](https://huggingface.co/diwank/cryptgpt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2717

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 512
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 40912

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 10.9453       | 0.0000 | 1     | 10.9383         |
| 3.0117        | 0.2933 | 12000 | 2.8623          |
| 2.5234        | 0.5866 | 24000 | 2.4040          |
| 2.3398        | 0.8799 | 36000 | 2.2717          |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1