--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo results: [] --- # roberta-base-ner-demo This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1304 - Precision: 0.9271 - Recall: 0.9357 - F1: 0.9314 - Accuracy: 0.9803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1666 | 1.0 | 477 | 0.0838 | 0.8642 | 0.9063 | 0.8847 | 0.9749 | | 0.0532 | 2.0 | 954 | 0.0818 | 0.9114 | 0.9271 | 0.9192 | 0.9780 | | 0.0272 | 3.0 | 1431 | 0.0847 | 0.9178 | 0.9318 | 0.9247 | 0.9798 | | 0.0148 | 4.0 | 1908 | 0.0945 | 0.9151 | 0.9321 | 0.9235 | 0.9796 | | 0.0082 | 5.0 | 2385 | 0.1051 | 0.9269 | 0.9364 | 0.9316 | 0.9807 | | 0.0053 | 6.0 | 2862 | 0.1092 | 0.9240 | 0.9365 | 0.9302 | 0.9807 | | 0.0031 | 7.0 | 3339 | 0.1259 | 0.9262 | 0.9364 | 0.9312 | 0.9801 | | 0.002 | 8.0 | 3816 | 0.1262 | 0.9270 | 0.9359 | 0.9314 | 0.9803 | | 0.0012 | 9.0 | 4293 | 0.1305 | 0.9275 | 0.9367 | 0.9320 | 0.9805 | | 0.0013 | 10.0 | 4770 | 0.1304 | 0.9271 | 0.9357 | 0.9314 | 0.9803 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1