|
import os |
|
import re |
|
|
|
import inflect |
|
import torch |
|
from tokenizers import Tokenizer |
|
|
|
|
|
from unidecode import unidecode |
|
|
|
_whitespace_re = re.compile(r"\s+") |
|
|
|
|
|
|
|
_abbreviations = [ |
|
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) |
|
for x in [ |
|
("mrs", "misess"), |
|
("mr", "mister"), |
|
("dr", "doctor"), |
|
("st", "saint"), |
|
("co", "company"), |
|
("jr", "junior"), |
|
("maj", "major"), |
|
("gen", "general"), |
|
("drs", "doctors"), |
|
("rev", "reverend"), |
|
("lt", "lieutenant"), |
|
("hon", "honorable"), |
|
("sgt", "sergeant"), |
|
("capt", "captain"), |
|
("esq", "esquire"), |
|
("ltd", "limited"), |
|
("col", "colonel"), |
|
("ft", "fort"), |
|
] |
|
] |
|
|
|
|
|
def expand_abbreviations(text): |
|
for regex, replacement in _abbreviations: |
|
text = re.sub(regex, replacement, text) |
|
return text |
|
|
|
|
|
_inflect = inflect.engine() |
|
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])") |
|
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)") |
|
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)") |
|
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)") |
|
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)") |
|
_number_re = re.compile(r"[0-9]+") |
|
|
|
|
|
def _remove_commas(m): |
|
return m.group(1).replace(",", "") |
|
|
|
|
|
def _expand_decimal_point(m): |
|
return m.group(1).replace(".", " point ") |
|
|
|
|
|
def _expand_dollars(m): |
|
match = m.group(1) |
|
parts = match.split(".") |
|
if len(parts) > 2: |
|
return match + " dollars" |
|
dollars = int(parts[0]) if parts[0] else 0 |
|
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 |
|
if dollars and cents: |
|
dollar_unit = "dollar" if dollars == 1 else "dollars" |
|
cent_unit = "cent" if cents == 1 else "cents" |
|
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit) |
|
elif dollars: |
|
dollar_unit = "dollar" if dollars == 1 else "dollars" |
|
return "%s %s" % (dollars, dollar_unit) |
|
elif cents: |
|
cent_unit = "cent" if cents == 1 else "cents" |
|
return "%s %s" % (cents, cent_unit) |
|
else: |
|
return "zero dollars" |
|
|
|
|
|
def _expand_ordinal(m): |
|
return _inflect.number_to_words(m.group(0)) |
|
|
|
|
|
def _expand_number(m): |
|
num = int(m.group(0)) |
|
if num > 1000 and num < 3000: |
|
if num == 2000: |
|
return "two thousand" |
|
elif num > 2000 and num < 2010: |
|
return "two thousand " + _inflect.number_to_words(num % 100) |
|
elif num % 100 == 0: |
|
return _inflect.number_to_words(num // 100) + " hundred" |
|
else: |
|
return _inflect.number_to_words( |
|
num, andword="", zero="oh", group=2 |
|
).replace(", ", " ") |
|
else: |
|
return _inflect.number_to_words(num, andword="") |
|
|
|
|
|
def normalize_numbers(text): |
|
text = re.sub(_comma_number_re, _remove_commas, text) |
|
text = re.sub(_pounds_re, r"\1 pounds", text) |
|
text = re.sub(_dollars_re, _expand_dollars, text) |
|
text = re.sub(_decimal_number_re, _expand_decimal_point, text) |
|
text = re.sub(_ordinal_re, _expand_ordinal, text) |
|
text = re.sub(_number_re, _expand_number, text) |
|
return text |
|
|
|
|
|
def expand_numbers(text): |
|
return normalize_numbers(text) |
|
|
|
|
|
def lowercase(text): |
|
return text.lower() |
|
|
|
|
|
def collapse_whitespace(text): |
|
return re.sub(_whitespace_re, " ", text) |
|
|
|
|
|
def convert_to_ascii(text): |
|
return unidecode(text) |
|
|
|
|
|
def basic_cleaners(text): |
|
"""Basic pipeline that lowercases and collapses whitespace without transliteration.""" |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def transliteration_cleaners(text): |
|
"""Pipeline for non-English text that transliterates to ASCII.""" |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def english_cleaners(text): |
|
"""Pipeline for English text, including number and abbreviation expansion.""" |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = expand_numbers(text) |
|
text = expand_abbreviations(text) |
|
text = collapse_whitespace(text) |
|
text = text.replace('"', "") |
|
return text |
|
|
|
|
|
def lev_distance(s1, s2): |
|
if len(s1) > len(s2): |
|
s1, s2 = s2, s1 |
|
|
|
distances = range(len(s1) + 1) |
|
for i2, c2 in enumerate(s2): |
|
distances_ = [i2 + 1] |
|
for i1, c1 in enumerate(s1): |
|
if c1 == c2: |
|
distances_.append(distances[i1]) |
|
else: |
|
distances_.append( |
|
1 + min((distances[i1], distances[i1 + 1], distances_[-1])) |
|
) |
|
distances = distances_ |
|
return distances[-1] |
|
|
|
|
|
DEFAULT_VOCAB_FILE = os.path.join( |
|
os.path.dirname(os.path.realpath(__file__)), "../data/tokenizer.json" |
|
) |
|
|
|
|
|
class VoiceBpeTokenizer: |
|
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE): |
|
if vocab_file is not None: |
|
self.tokenizer = Tokenizer.from_file(vocab_file) |
|
|
|
def preprocess_text(self, txt): |
|
txt = english_cleaners(txt) |
|
return txt |
|
|
|
def encode(self, txt): |
|
txt = self.preprocess_text(txt) |
|
txt = txt.replace(" ", "[SPACE]") |
|
return self.tokenizer.encode(txt).ids |
|
|
|
def decode(self, seq): |
|
if isinstance(seq, torch.Tensor): |
|
seq = seq.cpu().numpy() |
|
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "") |
|
txt = txt.replace("[SPACE]", " ") |
|
txt = txt.replace("[STOP]", "") |
|
txt = txt.replace("[UNK]", "") |
|
return txt |
|
|