djohnson17 commited on
Commit
1d9432d
·
verified ·
1 Parent(s): 6f8034f

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Acrobot-v1
16
+ type: Acrobot-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -126.10 +/- 11.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **Acrobot-v1**
25
+ This is a trained model of a **DQN** agent playing **Acrobot-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+ SBX (SB3 + Jax): https://github.com/araffin/sbx
39
+
40
+ Install the RL Zoo (with SB3 and SB3-Contrib):
41
+ ```bash
42
+ pip install rl_zoo3
43
+ ```
44
+
45
+ ```
46
+ # Download model and save it into the logs/ folder
47
+ python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga djohnson17 -f logs/
48
+ python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
49
+ ```
50
+
51
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
52
+ ```
53
+ python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga djohnson17 -f logs/
54
+ python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
55
+ ```
56
+
57
+ ## Training (with the RL Zoo)
58
+ ```
59
+ python -m rl_zoo3.train --algo dqn --env Acrobot-v1 -f logs/
60
+ # Upload the model and generate video (when possible)
61
+ python -m rl_zoo3.push_to_hub --algo dqn --env Acrobot-v1 -f logs/ -orga djohnson17
62
+ ```
63
+
64
+ ## Hyperparameters
65
+ ```python
66
+ OrderedDict([('batch_size', 128),
67
+ ('buffer_size', 50000),
68
+ ('exploration_final_eps', 0.1),
69
+ ('exploration_fraction', 0.12),
70
+ ('gamma', 0.99),
71
+ ('gradient_steps', -1),
72
+ ('learning_rate', 0.00063),
73
+ ('learning_starts', 0),
74
+ ('n_timesteps', 10000.0),
75
+ ('policy', 'MlpPolicy'),
76
+ ('policy_kwargs', 'dict(net_arch=[256, 256])'),
77
+ ('target_update_interval', 250),
78
+ ('train_freq', 4),
79
+ ('normalize', False)])
80
+ ```
81
+
82
+ # Environment Arguments
83
+ ```python
84
+ {'render_mode': 'rgb_array'}
85
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - dqn
4
+ - - conf_file
5
+ - dqn.yml
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Acrobot-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 608492856
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - buffer_size
5
+ - 50000
6
+ - - exploration_final_eps
7
+ - 0.1
8
+ - - exploration_fraction
9
+ - 0.12
10
+ - - gamma
11
+ - 0.99
12
+ - - gradient_steps
13
+ - -1
14
+ - - learning_rate
15
+ - 0.00063
16
+ - - learning_starts
17
+ - 0
18
+ - - n_timesteps
19
+ - 10000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[256, 256])
24
+ - - target_update_interval
25
+ - 250
26
+ - - train_freq
27
+ - 4
dqn-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9aa4b58cd408015170e6b0ca840d205439b3d084c7dc5a3e9048ef7f6c88574
3
+ size 1119580
dqn-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0
dqn-Acrobot-v1/data ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7a8510576320>",
9
+ "_build": "<function DQNPolicy._build at 0x7a85105763b0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7a8510576440>",
11
+ "forward": "<function DQNPolicy.forward at 0x7a85105764d0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7a8510576560>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7a85105765f0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7a8510576680>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7a8510573c80>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 10000,
26
+ "_total_timesteps": 10000,
27
+ "_num_timesteps_at_start": 0,
28
+ "seed": 0,
29
+ "action_noise": null,
30
+ "start_time": 1733988126991234246,
31
+ "learning_rate": {
32
+ ":type:": "<class 'function'>",
33
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
34
+ },
35
+ "tensorboard_log": null,
36
+ "_last_obs": null,
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAM3Tcz+/AJw+oSI9P6SFLL8kEyu/kLA6QJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
44
+ },
45
+ "_episode_num": 42,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.0,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVHgUAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwH9AAAAAAACMAWyUTfQBjAF0lEdADZ5RCQcPv3V9lChoBkfAf0AAAAAAAGgHTfQBaAhHQBS+h0yP+4t1fZQoaAZHwHxgAAAAAABoB03HAWgIR0AaJVyWAwwkdX2UKGgGR8BvwAAAAAAAaAdL/2gIR0AdHjdYW+GodX2UKGgGR8BvgAAAAAAAaAdL/WgIR0AgD15B1LamdX2UKGgGR8BoYAAAAAAAaAdLxGgIR0AhSvi97F85dX2UKGgGR8B1QAAAAAAAaAdNVQFoCEdAI0mrKeTV2HV9lChoBkfAb4AAAAAAAGgHS/1oCEdAJMMLfDUExXV9lChoBkfAa+AAAAAAAGgHS+BoCEdAJhf9xZMcqHV9lChoBkfAcxAAAAAAAGgHTTIBaAhHQCfpZbILgGd1fZQoaAZHwGPgAAAAAABoB0ugaAhHQCjbF85S3sp1fZQoaAZHwF8AAAAAAABoB0t9aAhHQCmZWvKU3XJ1fZQoaAZHwGpgAAAAAABoB0vUaAhHQCrZEx7AtWd1fZQoaAZHwGngAAAAAABoB0vQaAhHQCwbmQr+YMR1fZQoaAZHwHkgAAAAAABoB02TAWgIR0AvKZiuuA7QdX2UKGgGR8B/QAAAAAAAaAdN9AFoCEdAMXwyVObiInV9lChoBkfAZuAAAAAAAGgHS7hoCEdAMgjjebd8A3V9lChoBkfAY0AAAAAAAGgHS5toCEdAMn+PV/c32nV9lChoBkfAasAAAAAAAGgHS9doCEdAMydUwSJ0n3V9lChoBkfAY2AAAAAAAGgHS5xoCEdAM5uu7pV0cXV9lChoBkfAaEAAAAAAAGgHS8NoCEdANC2rXDm8unV9lChoBkfAYwAAAAAAAGgHS5loCEdANKF1jiGWU3V9lChoBkfAZSAAAAAAAGgHS6poCEdANSAxvegte3V9lChoBkfAayAAAAAAAGgHS9poCEdANcGNJe3QU3V9lChoBkfAXoAAAAAAAGgHS3toCEdANh1zdUKiPHV9lChoBkfAauAAAAAAAGgHS9hoCEdANsA9zOoo/nV9lChoBkfAZWAAAAAAAGgHS6xoCEdAN0LuIAOrhnV9lChoBkfAZiAAAAAAAGgHS7JoCEdAN8lRgqmTDHV9lChoBkfAa8AAAAAAAGgHS99oCEdAOHOmJm/WUnV9lChoBkfAa+AAAAAAAGgHS+BoCEdAOR5NKyv9tXV9lChoBkfAd+AAAAAAAGgHTX8BaAhHQDo8l0HQhOh1fZQoaAZHwGUgAAAAAABoB0uqaAhHQDq90KZ2IO91fZQoaAZHwGeAAAAAAABoB0u9aAhHQDtbIGQjlgd1fZQoaAZHwGFAAAAAAABoB0uLaAhHQDvern1WbPR1fZQoaAZHwHjQAAAAAABoB02OAWgIR0A9ZjT8YQ8PdX2UKGgGR8B1YAAAAAAAaAdNVwFoCEdAPqDj3mFJx3V9lChoBkfAawAAAAAAAGgHS9loCEdAP0TjBEa2nnV9lChoBkfAYmAAAAAAAGgHS5RoCEdAP7EE1VHWjHV9lChoBkfAYKAAAAAAAGgHS4ZoCEdAQAr/ZM+NcXV9lChoBkfAYGAAAAAAAGgHS4RoCEdAQD2LR8c+7nV9lChoBkfAWAAAAAAAAGgHS2FoCEdAQGMQ2/BWP3V9lChoBkfAV4AAAAAAAGgHS19oCEdAQIgHoouwo3VlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 10000,
59
+ "observation_space": {
60
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
+ ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgYAAAAAAAAAAQEBAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwaFlGgWdJRSlIwEaGlnaJRoEyiWGAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/2w9JQdYx4kGUaAtLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoHUsGhZRoFnSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 6
65
+ ],
66
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
67
+ "bounded_below": "[ True True True True True True]",
68
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
69
+ "bounded_above": "[ True True True True True True]",
70
+ "low_repr": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
71
+ "high_repr": "[ 1. 1. 1. 1. 12.566371 28.274334]",
72
+ "_np_random": null
73
+ },
74
+ "action_space": {
75
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
77
+ "n": "3",
78
+ "start": "0",
79
+ "_shape": [],
80
+ "dtype": "int64",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 1,
85
+ "batch_size": 128,
86
+ "learning_starts": 0,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": -1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
96
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
97
+ "__init__": "<function ReplayBuffer.__init__ at 0x7a85109bb7f0>",
98
+ "add": "<function ReplayBuffer.add at 0x7a85109bb880>",
99
+ "sample": "<function ReplayBuffer.sample at 0x7a85109bb910>",
100
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7a85109bb9a0>",
101
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7a85109bba30>)>",
102
+ "__abstractmethods__": "frozenset()",
103
+ "_abc_impl": "<_abc._abc_data object at 0x7a851098c480>"
104
+ },
105
+ "replay_buffer_kwargs": {},
106
+ "train_freq": {
107
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
108
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
109
+ },
110
+ "use_sde_at_warmup": false,
111
+ "exploration_initial_eps": 1.0,
112
+ "exploration_final_eps": 0.1,
113
+ "exploration_fraction": 0.12,
114
+ "target_update_interval": 250,
115
+ "_n_calls": 10000,
116
+ "max_grad_norm": 10,
117
+ "exploration_rate": 0.1,
118
+ "lr_schedule": {
119
+ ":type:": "<class 'function'>",
120
+ ":serialized:": "gAWVbAQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhUMCBAGUjAN2YWyUhZQpdJRSlH2UKGgWjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UaBiMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5RoGoxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oHSlSlIWUdJRSlGgjaER9lH2UKGgYjARmdW5jlGgnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaE1dlGhPfZR1hpSGUjAu"
121
+ },
122
+ "batch_norm_stats": [],
123
+ "batch_norm_stats_target": [],
124
+ "exploration_schedule": {
125
+ ":type:": "<class 'function'>",
126
+ ":serialized:": "gAWVTQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
127
+ }
128
+ }
dqn-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c462e72072d4a2c35426d769c18fc859b49eb5de2300eba3ff7da4c4d9d671
3
+ size 552288
dqn-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18821da5b51d1b6b0d9509f03fb84c5759df4b627435f740b45f5f6316b7a6c
3
+ size 551346
dqn-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.4.0
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 1.0.0
9
+ - OpenAI Gym: 0.25.2
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -126.1, "std_reward": 11.970380110923797, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-12T07:35:43.327971"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9869d81e7b5ef5e237d874dc9c07661e49fc080ab6d6be0d9eb8faa797b718ea
3
+ size 1093