djuna commited on
Commit
c9f0332
·
verified ·
1 Parent(s): 35b616f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2546 -0
README.md ADDED
@@ -0,0 +1,2546 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v2-small-en
3
+ datasets:
4
+ - jinaai/negation-dataset
5
+ language: en
6
+ license: apache-2.0
7
+ tags:
8
+ - sentence-transformers
9
+ - feature-extraction
10
+ - sentence-similarity
11
+ - mteb
12
+ - llama-cpp
13
+ - gguf-my-repo
14
+ inference: false
15
+ model-index:
16
+ - name: jina-embedding-s-en-v2
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 71.35820895522387
29
+ - type: ap
30
+ value: 33.99931933598115
31
+ - type: f1
32
+ value: 65.3853685535555
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 82.90140000000001
44
+ - type: ap
45
+ value: 78.01434597815617
46
+ - type: f1
47
+ value: 82.83357802722676
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 40.88999999999999
59
+ - type: f1
60
+ value: 39.209432767163456
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ name: MTEB ArguAna
65
+ type: arguana
66
+ config: default
67
+ split: test
68
+ revision: None
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 23.257
72
+ - type: map_at_10
73
+ value: 37.946000000000005
74
+ - type: map_at_100
75
+ value: 39.17
76
+ - type: map_at_1000
77
+ value: 39.181
78
+ - type: map_at_3
79
+ value: 32.99
80
+ - type: map_at_5
81
+ value: 35.467999999999996
82
+ - type: mrr_at_1
83
+ value: 23.541999999999998
84
+ - type: mrr_at_10
85
+ value: 38.057
86
+ - type: mrr_at_100
87
+ value: 39.289
88
+ - type: mrr_at_1000
89
+ value: 39.299
90
+ - type: mrr_at_3
91
+ value: 33.096
92
+ - type: mrr_at_5
93
+ value: 35.628
94
+ - type: ndcg_at_1
95
+ value: 23.257
96
+ - type: ndcg_at_10
97
+ value: 46.729
98
+ - type: ndcg_at_100
99
+ value: 51.900999999999996
100
+ - type: ndcg_at_1000
101
+ value: 52.16
102
+ - type: ndcg_at_3
103
+ value: 36.323
104
+ - type: ndcg_at_5
105
+ value: 40.766999999999996
106
+ - type: precision_at_1
107
+ value: 23.257
108
+ - type: precision_at_10
109
+ value: 7.510999999999999
110
+ - type: precision_at_100
111
+ value: 0.976
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 15.339
116
+ - type: precision_at_5
117
+ value: 11.350999999999999
118
+ - type: recall_at_1
119
+ value: 23.257
120
+ - type: recall_at_10
121
+ value: 75.107
122
+ - type: recall_at_100
123
+ value: 97.58200000000001
124
+ - type: recall_at_1000
125
+ value: 99.57300000000001
126
+ - type: recall_at_3
127
+ value: 46.017
128
+ - type: recall_at_5
129
+ value: 56.757000000000005
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ name: MTEB ArxivClusteringP2P
134
+ type: mteb/arxiv-clustering-p2p
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 44.02420878391967
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ name: MTEB ArxivClusteringS2S
145
+ type: mteb/arxiv-clustering-s2s
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 35.16136856000258
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ name: MTEB AskUbuntuDupQuestions
156
+ type: mteb/askubuntudupquestions-reranking
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 59.61809790513646
163
+ - type: mrr
164
+ value: 73.07215406938397
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ name: MTEB BIOSSES
169
+ type: mteb/biosses-sts
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 82.0167350090749
176
+ - type: cos_sim_spearman
177
+ value: 80.51569002630401
178
+ - type: euclidean_pearson
179
+ value: 81.46820525099726
180
+ - type: euclidean_spearman
181
+ value: 80.51569002630401
182
+ - type: manhattan_pearson
183
+ value: 81.35596555056757
184
+ - type: manhattan_spearman
185
+ value: 80.12592210903303
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ name: MTEB Banking77Classification
190
+ type: mteb/banking77
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 78.25
197
+ - type: f1
198
+ value: 77.34950913540605
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ name: MTEB BiorxivClusteringP2P
203
+ type: mteb/biorxiv-clustering-p2p
204
+ config: default
205
+ split: test
206
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
207
+ metrics:
208
+ - type: v_measure
209
+ value: 35.57238596005698
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ name: MTEB BiorxivClusteringS2S
214
+ type: mteb/biorxiv-clustering-s2s
215
+ config: default
216
+ split: test
217
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
218
+ metrics:
219
+ - type: v_measure
220
+ value: 29.066444306196683
221
+ - task:
222
+ type: Retrieval
223
+ dataset:
224
+ name: MTEB CQADupstackAndroidRetrieval
225
+ type: BeIR/cqadupstack
226
+ config: default
227
+ split: test
228
+ revision: None
229
+ metrics:
230
+ - type: map_at_1
231
+ value: 31.891000000000002
232
+ - type: map_at_10
233
+ value: 42.772
234
+ - type: map_at_100
235
+ value: 44.108999999999995
236
+ - type: map_at_1000
237
+ value: 44.236
238
+ - type: map_at_3
239
+ value: 39.289
240
+ - type: map_at_5
241
+ value: 41.113
242
+ - type: mrr_at_1
243
+ value: 39.342
244
+ - type: mrr_at_10
245
+ value: 48.852000000000004
246
+ - type: mrr_at_100
247
+ value: 49.534
248
+ - type: mrr_at_1000
249
+ value: 49.582
250
+ - type: mrr_at_3
251
+ value: 46.089999999999996
252
+ - type: mrr_at_5
253
+ value: 47.685
254
+ - type: ndcg_at_1
255
+ value: 39.342
256
+ - type: ndcg_at_10
257
+ value: 48.988
258
+ - type: ndcg_at_100
259
+ value: 53.854
260
+ - type: ndcg_at_1000
261
+ value: 55.955
262
+ - type: ndcg_at_3
263
+ value: 43.877
264
+ - type: ndcg_at_5
265
+ value: 46.027
266
+ - type: precision_at_1
267
+ value: 39.342
268
+ - type: precision_at_10
269
+ value: 9.285
270
+ - type: precision_at_100
271
+ value: 1.488
272
+ - type: precision_at_1000
273
+ value: 0.194
274
+ - type: precision_at_3
275
+ value: 20.696
276
+ - type: precision_at_5
277
+ value: 14.878
278
+ - type: recall_at_1
279
+ value: 31.891000000000002
280
+ - type: recall_at_10
281
+ value: 60.608
282
+ - type: recall_at_100
283
+ value: 81.025
284
+ - type: recall_at_1000
285
+ value: 94.883
286
+ - type: recall_at_3
287
+ value: 45.694
288
+ - type: recall_at_5
289
+ value: 51.684
290
+ - type: map_at_1
291
+ value: 28.778
292
+ - type: map_at_10
293
+ value: 37.632
294
+ - type: map_at_100
295
+ value: 38.800000000000004
296
+ - type: map_at_1000
297
+ value: 38.934999999999995
298
+ - type: map_at_3
299
+ value: 35.293
300
+ - type: map_at_5
301
+ value: 36.547000000000004
302
+ - type: mrr_at_1
303
+ value: 35.35
304
+ - type: mrr_at_10
305
+ value: 42.936
306
+ - type: mrr_at_100
307
+ value: 43.69
308
+ - type: mrr_at_1000
309
+ value: 43.739
310
+ - type: mrr_at_3
311
+ value: 41.062
312
+ - type: mrr_at_5
313
+ value: 42.097
314
+ - type: ndcg_at_1
315
+ value: 35.35
316
+ - type: ndcg_at_10
317
+ value: 42.528
318
+ - type: ndcg_at_100
319
+ value: 46.983000000000004
320
+ - type: ndcg_at_1000
321
+ value: 49.187999999999995
322
+ - type: ndcg_at_3
323
+ value: 39.271
324
+ - type: ndcg_at_5
325
+ value: 40.654
326
+ - type: precision_at_1
327
+ value: 35.35
328
+ - type: precision_at_10
329
+ value: 7.828
330
+ - type: precision_at_100
331
+ value: 1.3010000000000002
332
+ - type: precision_at_1000
333
+ value: 0.17700000000000002
334
+ - type: precision_at_3
335
+ value: 18.96
336
+ - type: precision_at_5
337
+ value: 13.120999999999999
338
+ - type: recall_at_1
339
+ value: 28.778
340
+ - type: recall_at_10
341
+ value: 50.775000000000006
342
+ - type: recall_at_100
343
+ value: 69.66799999999999
344
+ - type: recall_at_1000
345
+ value: 83.638
346
+ - type: recall_at_3
347
+ value: 40.757
348
+ - type: recall_at_5
349
+ value: 44.86
350
+ - type: map_at_1
351
+ value: 37.584
352
+ - type: map_at_10
353
+ value: 49.69
354
+ - type: map_at_100
355
+ value: 50.639
356
+ - type: map_at_1000
357
+ value: 50.702999999999996
358
+ - type: map_at_3
359
+ value: 46.61
360
+ - type: map_at_5
361
+ value: 48.486000000000004
362
+ - type: mrr_at_1
363
+ value: 43.009
364
+ - type: mrr_at_10
365
+ value: 52.949999999999996
366
+ - type: mrr_at_100
367
+ value: 53.618
368
+ - type: mrr_at_1000
369
+ value: 53.65299999999999
370
+ - type: mrr_at_3
371
+ value: 50.605999999999995
372
+ - type: mrr_at_5
373
+ value: 52.095
374
+ - type: ndcg_at_1
375
+ value: 43.009
376
+ - type: ndcg_at_10
377
+ value: 55.278000000000006
378
+ - type: ndcg_at_100
379
+ value: 59.134
380
+ - type: ndcg_at_1000
381
+ value: 60.528999999999996
382
+ - type: ndcg_at_3
383
+ value: 50.184
384
+ - type: ndcg_at_5
385
+ value: 52.919000000000004
386
+ - type: precision_at_1
387
+ value: 43.009
388
+ - type: precision_at_10
389
+ value: 8.821
390
+ - type: precision_at_100
391
+ value: 1.161
392
+ - type: precision_at_1000
393
+ value: 0.133
394
+ - type: precision_at_3
395
+ value: 22.424
396
+ - type: precision_at_5
397
+ value: 15.436
398
+ - type: recall_at_1
399
+ value: 37.584
400
+ - type: recall_at_10
401
+ value: 68.514
402
+ - type: recall_at_100
403
+ value: 85.099
404
+ - type: recall_at_1000
405
+ value: 95.123
406
+ - type: recall_at_3
407
+ value: 55.007
408
+ - type: recall_at_5
409
+ value: 61.714999999999996
410
+ - type: map_at_1
411
+ value: 24.7
412
+ - type: map_at_10
413
+ value: 32.804
414
+ - type: map_at_100
415
+ value: 33.738
416
+ - type: map_at_1000
417
+ value: 33.825
418
+ - type: map_at_3
419
+ value: 30.639
420
+ - type: map_at_5
421
+ value: 31.781
422
+ - type: mrr_at_1
423
+ value: 26.328000000000003
424
+ - type: mrr_at_10
425
+ value: 34.679
426
+ - type: mrr_at_100
427
+ value: 35.510000000000005
428
+ - type: mrr_at_1000
429
+ value: 35.577999999999996
430
+ - type: mrr_at_3
431
+ value: 32.58
432
+ - type: mrr_at_5
433
+ value: 33.687
434
+ - type: ndcg_at_1
435
+ value: 26.328000000000003
436
+ - type: ndcg_at_10
437
+ value: 37.313
438
+ - type: ndcg_at_100
439
+ value: 42.004000000000005
440
+ - type: ndcg_at_1000
441
+ value: 44.232
442
+ - type: ndcg_at_3
443
+ value: 33.076
444
+ - type: ndcg_at_5
445
+ value: 34.966
446
+ - type: precision_at_1
447
+ value: 26.328000000000003
448
+ - type: precision_at_10
449
+ value: 5.627
450
+ - type: precision_at_100
451
+ value: 0.8410000000000001
452
+ - type: precision_at_1000
453
+ value: 0.106
454
+ - type: precision_at_3
455
+ value: 14.011000000000001
456
+ - type: precision_at_5
457
+ value: 9.582
458
+ - type: recall_at_1
459
+ value: 24.7
460
+ - type: recall_at_10
461
+ value: 49.324
462
+ - type: recall_at_100
463
+ value: 71.018
464
+ - type: recall_at_1000
465
+ value: 87.905
466
+ - type: recall_at_3
467
+ value: 37.7
468
+ - type: recall_at_5
469
+ value: 42.281
470
+ - type: map_at_1
471
+ value: 14.350999999999999
472
+ - type: map_at_10
473
+ value: 21.745
474
+ - type: map_at_100
475
+ value: 22.731
476
+ - type: map_at_1000
477
+ value: 22.852
478
+ - type: map_at_3
479
+ value: 19.245
480
+ - type: map_at_5
481
+ value: 20.788
482
+ - type: mrr_at_1
483
+ value: 18.159
484
+ - type: mrr_at_10
485
+ value: 25.833000000000002
486
+ - type: mrr_at_100
487
+ value: 26.728
488
+ - type: mrr_at_1000
489
+ value: 26.802
490
+ - type: mrr_at_3
491
+ value: 23.383000000000003
492
+ - type: mrr_at_5
493
+ value: 24.887999999999998
494
+ - type: ndcg_at_1
495
+ value: 18.159
496
+ - type: ndcg_at_10
497
+ value: 26.518000000000004
498
+ - type: ndcg_at_100
499
+ value: 31.473000000000003
500
+ - type: ndcg_at_1000
501
+ value: 34.576
502
+ - type: ndcg_at_3
503
+ value: 21.907
504
+ - type: ndcg_at_5
505
+ value: 24.39
506
+ - type: precision_at_1
507
+ value: 18.159
508
+ - type: precision_at_10
509
+ value: 4.938
510
+ - type: precision_at_100
511
+ value: 0.853
512
+ - type: precision_at_1000
513
+ value: 0.125
514
+ - type: precision_at_3
515
+ value: 10.655000000000001
516
+ - type: precision_at_5
517
+ value: 7.985
518
+ - type: recall_at_1
519
+ value: 14.350999999999999
520
+ - type: recall_at_10
521
+ value: 37.284
522
+ - type: recall_at_100
523
+ value: 59.11300000000001
524
+ - type: recall_at_1000
525
+ value: 81.634
526
+ - type: recall_at_3
527
+ value: 24.753
528
+ - type: recall_at_5
529
+ value: 30.979
530
+ - type: map_at_1
531
+ value: 26.978
532
+ - type: map_at_10
533
+ value: 36.276
534
+ - type: map_at_100
535
+ value: 37.547000000000004
536
+ - type: map_at_1000
537
+ value: 37.678
538
+ - type: map_at_3
539
+ value: 33.674
540
+ - type: map_at_5
541
+ value: 35.119
542
+ - type: mrr_at_1
543
+ value: 32.916000000000004
544
+ - type: mrr_at_10
545
+ value: 41.798
546
+ - type: mrr_at_100
547
+ value: 42.72
548
+ - type: mrr_at_1000
549
+ value: 42.778
550
+ - type: mrr_at_3
551
+ value: 39.493
552
+ - type: mrr_at_5
553
+ value: 40.927
554
+ - type: ndcg_at_1
555
+ value: 32.916000000000004
556
+ - type: ndcg_at_10
557
+ value: 41.81
558
+ - type: ndcg_at_100
559
+ value: 47.284
560
+ - type: ndcg_at_1000
561
+ value: 49.702
562
+ - type: ndcg_at_3
563
+ value: 37.486999999999995
564
+ - type: ndcg_at_5
565
+ value: 39.597
566
+ - type: precision_at_1
567
+ value: 32.916000000000004
568
+ - type: precision_at_10
569
+ value: 7.411
570
+ - type: precision_at_100
571
+ value: 1.189
572
+ - type: precision_at_1000
573
+ value: 0.158
574
+ - type: precision_at_3
575
+ value: 17.581
576
+ - type: precision_at_5
577
+ value: 12.397
578
+ - type: recall_at_1
579
+ value: 26.978
580
+ - type: recall_at_10
581
+ value: 52.869
582
+ - type: recall_at_100
583
+ value: 75.78399999999999
584
+ - type: recall_at_1000
585
+ value: 91.545
586
+ - type: recall_at_3
587
+ value: 40.717
588
+ - type: recall_at_5
589
+ value: 46.168
590
+ - type: map_at_1
591
+ value: 24.641
592
+ - type: map_at_10
593
+ value: 32.916000000000004
594
+ - type: map_at_100
595
+ value: 34.165
596
+ - type: map_at_1000
597
+ value: 34.286
598
+ - type: map_at_3
599
+ value: 30.335
600
+ - type: map_at_5
601
+ value: 31.569000000000003
602
+ - type: mrr_at_1
603
+ value: 30.593999999999998
604
+ - type: mrr_at_10
605
+ value: 38.448
606
+ - type: mrr_at_100
607
+ value: 39.299
608
+ - type: mrr_at_1000
609
+ value: 39.362
610
+ - type: mrr_at_3
611
+ value: 36.244
612
+ - type: mrr_at_5
613
+ value: 37.232
614
+ - type: ndcg_at_1
615
+ value: 30.593999999999998
616
+ - type: ndcg_at_10
617
+ value: 38.2
618
+ - type: ndcg_at_100
619
+ value: 43.742
620
+ - type: ndcg_at_1000
621
+ value: 46.217000000000006
622
+ - type: ndcg_at_3
623
+ value: 33.925
624
+ - type: ndcg_at_5
625
+ value: 35.394
626
+ - type: precision_at_1
627
+ value: 30.593999999999998
628
+ - type: precision_at_10
629
+ value: 6.895
630
+ - type: precision_at_100
631
+ value: 1.1320000000000001
632
+ - type: precision_at_1000
633
+ value: 0.153
634
+ - type: precision_at_3
635
+ value: 16.096
636
+ - type: precision_at_5
637
+ value: 11.05
638
+ - type: recall_at_1
639
+ value: 24.641
640
+ - type: recall_at_10
641
+ value: 48.588
642
+ - type: recall_at_100
643
+ value: 72.841
644
+ - type: recall_at_1000
645
+ value: 89.535
646
+ - type: recall_at_3
647
+ value: 36.087
648
+ - type: recall_at_5
649
+ value: 40.346
650
+ - type: map_at_1
651
+ value: 24.79425
652
+ - type: map_at_10
653
+ value: 33.12033333333333
654
+ - type: map_at_100
655
+ value: 34.221333333333334
656
+ - type: map_at_1000
657
+ value: 34.3435
658
+ - type: map_at_3
659
+ value: 30.636583333333338
660
+ - type: map_at_5
661
+ value: 31.974083333333326
662
+ - type: mrr_at_1
663
+ value: 29.242416666666664
664
+ - type: mrr_at_10
665
+ value: 37.11675
666
+ - type: mrr_at_100
667
+ value: 37.93783333333334
668
+ - type: mrr_at_1000
669
+ value: 38.003083333333336
670
+ - type: mrr_at_3
671
+ value: 34.904666666666664
672
+ - type: mrr_at_5
673
+ value: 36.12916666666667
674
+ - type: ndcg_at_1
675
+ value: 29.242416666666664
676
+ - type: ndcg_at_10
677
+ value: 38.03416666666667
678
+ - type: ndcg_at_100
679
+ value: 42.86674999999999
680
+ - type: ndcg_at_1000
681
+ value: 45.34550000000001
682
+ - type: ndcg_at_3
683
+ value: 33.76466666666666
684
+ - type: ndcg_at_5
685
+ value: 35.668666666666674
686
+ - type: precision_at_1
687
+ value: 29.242416666666664
688
+ - type: precision_at_10
689
+ value: 6.589833333333334
690
+ - type: precision_at_100
691
+ value: 1.0693333333333332
692
+ - type: precision_at_1000
693
+ value: 0.14641666666666667
694
+ - type: precision_at_3
695
+ value: 15.430749999999998
696
+ - type: precision_at_5
697
+ value: 10.833833333333333
698
+ - type: recall_at_1
699
+ value: 24.79425
700
+ - type: recall_at_10
701
+ value: 48.582916666666655
702
+ - type: recall_at_100
703
+ value: 69.88499999999999
704
+ - type: recall_at_1000
705
+ value: 87.211
706
+ - type: recall_at_3
707
+ value: 36.625499999999995
708
+ - type: recall_at_5
709
+ value: 41.553999999999995
710
+ - type: map_at_1
711
+ value: 22.767
712
+ - type: map_at_10
713
+ value: 28.450999999999997
714
+ - type: map_at_100
715
+ value: 29.332
716
+ - type: map_at_1000
717
+ value: 29.426000000000002
718
+ - type: map_at_3
719
+ value: 26.379
720
+ - type: map_at_5
721
+ value: 27.584999999999997
722
+ - type: mrr_at_1
723
+ value: 25.46
724
+ - type: mrr_at_10
725
+ value: 30.974
726
+ - type: mrr_at_100
727
+ value: 31.784000000000002
728
+ - type: mrr_at_1000
729
+ value: 31.857999999999997
730
+ - type: mrr_at_3
731
+ value: 28.962
732
+ - type: mrr_at_5
733
+ value: 30.066
734
+ - type: ndcg_at_1
735
+ value: 25.46
736
+ - type: ndcg_at_10
737
+ value: 32.041
738
+ - type: ndcg_at_100
739
+ value: 36.522
740
+ - type: ndcg_at_1000
741
+ value: 39.101
742
+ - type: ndcg_at_3
743
+ value: 28.152
744
+ - type: ndcg_at_5
745
+ value: 30.03
746
+ - type: precision_at_1
747
+ value: 25.46
748
+ - type: precision_at_10
749
+ value: 4.893
750
+ - type: precision_at_100
751
+ value: 0.77
752
+ - type: precision_at_1000
753
+ value: 0.107
754
+ - type: precision_at_3
755
+ value: 11.605
756
+ - type: precision_at_5
757
+ value: 8.19
758
+ - type: recall_at_1
759
+ value: 22.767
760
+ - type: recall_at_10
761
+ value: 40.71
762
+ - type: recall_at_100
763
+ value: 61.334999999999994
764
+ - type: recall_at_1000
765
+ value: 80.567
766
+ - type: recall_at_3
767
+ value: 30.198000000000004
768
+ - type: recall_at_5
769
+ value: 34.803
770
+ - type: map_at_1
771
+ value: 16.722
772
+ - type: map_at_10
773
+ value: 22.794
774
+ - type: map_at_100
775
+ value: 23.7
776
+ - type: map_at_1000
777
+ value: 23.822
778
+ - type: map_at_3
779
+ value: 20.781
780
+ - type: map_at_5
781
+ value: 22.024
782
+ - type: mrr_at_1
783
+ value: 20.061999999999998
784
+ - type: mrr_at_10
785
+ value: 26.346999999999998
786
+ - type: mrr_at_100
787
+ value: 27.153
788
+ - type: mrr_at_1000
789
+ value: 27.233
790
+ - type: mrr_at_3
791
+ value: 24.375
792
+ - type: mrr_at_5
793
+ value: 25.593
794
+ - type: ndcg_at_1
795
+ value: 20.061999999999998
796
+ - type: ndcg_at_10
797
+ value: 26.785999999999998
798
+ - type: ndcg_at_100
799
+ value: 31.319999999999997
800
+ - type: ndcg_at_1000
801
+ value: 34.346
802
+ - type: ndcg_at_3
803
+ value: 23.219
804
+ - type: ndcg_at_5
805
+ value: 25.107000000000003
806
+ - type: precision_at_1
807
+ value: 20.061999999999998
808
+ - type: precision_at_10
809
+ value: 4.78
810
+ - type: precision_at_100
811
+ value: 0.83
812
+ - type: precision_at_1000
813
+ value: 0.125
814
+ - type: precision_at_3
815
+ value: 10.874
816
+ - type: precision_at_5
817
+ value: 7.956
818
+ - type: recall_at_1
819
+ value: 16.722
820
+ - type: recall_at_10
821
+ value: 35.204
822
+ - type: recall_at_100
823
+ value: 55.797
824
+ - type: recall_at_1000
825
+ value: 77.689
826
+ - type: recall_at_3
827
+ value: 25.245
828
+ - type: recall_at_5
829
+ value: 30.115
830
+ - type: map_at_1
831
+ value: 24.842
832
+ - type: map_at_10
833
+ value: 32.917
834
+ - type: map_at_100
835
+ value: 33.961000000000006
836
+ - type: map_at_1000
837
+ value: 34.069
838
+ - type: map_at_3
839
+ value: 30.595
840
+ - type: map_at_5
841
+ value: 31.837
842
+ - type: mrr_at_1
843
+ value: 29.011
844
+ - type: mrr_at_10
845
+ value: 36.977
846
+ - type: mrr_at_100
847
+ value: 37.814
848
+ - type: mrr_at_1000
849
+ value: 37.885999999999996
850
+ - type: mrr_at_3
851
+ value: 34.966
852
+ - type: mrr_at_5
853
+ value: 36.043
854
+ - type: ndcg_at_1
855
+ value: 29.011
856
+ - type: ndcg_at_10
857
+ value: 37.735
858
+ - type: ndcg_at_100
859
+ value: 42.683
860
+ - type: ndcg_at_1000
861
+ value: 45.198
862
+ - type: ndcg_at_3
863
+ value: 33.650000000000006
864
+ - type: ndcg_at_5
865
+ value: 35.386
866
+ - type: precision_at_1
867
+ value: 29.011
868
+ - type: precision_at_10
869
+ value: 6.259
870
+ - type: precision_at_100
871
+ value: 0.984
872
+ - type: precision_at_1000
873
+ value: 0.13
874
+ - type: precision_at_3
875
+ value: 15.329999999999998
876
+ - type: precision_at_5
877
+ value: 10.541
878
+ - type: recall_at_1
879
+ value: 24.842
880
+ - type: recall_at_10
881
+ value: 48.304
882
+ - type: recall_at_100
883
+ value: 70.04899999999999
884
+ - type: recall_at_1000
885
+ value: 87.82600000000001
886
+ - type: recall_at_3
887
+ value: 36.922
888
+ - type: recall_at_5
889
+ value: 41.449999999999996
890
+ - type: map_at_1
891
+ value: 24.252000000000002
892
+ - type: map_at_10
893
+ value: 32.293
894
+ - type: map_at_100
895
+ value: 33.816
896
+ - type: map_at_1000
897
+ value: 34.053
898
+ - type: map_at_3
899
+ value: 29.781999999999996
900
+ - type: map_at_5
901
+ value: 31.008000000000003
902
+ - type: mrr_at_1
903
+ value: 29.051
904
+ - type: mrr_at_10
905
+ value: 36.722
906
+ - type: mrr_at_100
907
+ value: 37.663000000000004
908
+ - type: mrr_at_1000
909
+ value: 37.734
910
+ - type: mrr_at_3
911
+ value: 34.354
912
+ - type: mrr_at_5
913
+ value: 35.609
914
+ - type: ndcg_at_1
915
+ value: 29.051
916
+ - type: ndcg_at_10
917
+ value: 37.775999999999996
918
+ - type: ndcg_at_100
919
+ value: 43.221
920
+ - type: ndcg_at_1000
921
+ value: 46.116
922
+ - type: ndcg_at_3
923
+ value: 33.403
924
+ - type: ndcg_at_5
925
+ value: 35.118
926
+ - type: precision_at_1
927
+ value: 29.051
928
+ - type: precision_at_10
929
+ value: 7.332
930
+ - type: precision_at_100
931
+ value: 1.49
932
+ - type: precision_at_1000
933
+ value: 0.23600000000000002
934
+ - type: precision_at_3
935
+ value: 15.415000000000001
936
+ - type: precision_at_5
937
+ value: 11.107
938
+ - type: recall_at_1
939
+ value: 24.252000000000002
940
+ - type: recall_at_10
941
+ value: 47.861
942
+ - type: recall_at_100
943
+ value: 72.21600000000001
944
+ - type: recall_at_1000
945
+ value: 90.886
946
+ - type: recall_at_3
947
+ value: 35.533
948
+ - type: recall_at_5
949
+ value: 39.959
950
+ - type: map_at_1
951
+ value: 20.025000000000002
952
+ - type: map_at_10
953
+ value: 27.154
954
+ - type: map_at_100
955
+ value: 28.118
956
+ - type: map_at_1000
957
+ value: 28.237000000000002
958
+ - type: map_at_3
959
+ value: 25.017
960
+ - type: map_at_5
961
+ value: 25.832
962
+ - type: mrr_at_1
963
+ value: 21.627
964
+ - type: mrr_at_10
965
+ value: 28.884999999999998
966
+ - type: mrr_at_100
967
+ value: 29.741
968
+ - type: mrr_at_1000
969
+ value: 29.831999999999997
970
+ - type: mrr_at_3
971
+ value: 26.741
972
+ - type: mrr_at_5
973
+ value: 27.628000000000004
974
+ - type: ndcg_at_1
975
+ value: 21.627
976
+ - type: ndcg_at_10
977
+ value: 31.436999999999998
978
+ - type: ndcg_at_100
979
+ value: 36.181000000000004
980
+ - type: ndcg_at_1000
981
+ value: 38.986
982
+ - type: ndcg_at_3
983
+ value: 27.025
984
+ - type: ndcg_at_5
985
+ value: 28.436
986
+ - type: precision_at_1
987
+ value: 21.627
988
+ - type: precision_at_10
989
+ value: 5.009
990
+ - type: precision_at_100
991
+ value: 0.7929999999999999
992
+ - type: precision_at_1000
993
+ value: 0.11299999999999999
994
+ - type: precision_at_3
995
+ value: 11.522
996
+ - type: precision_at_5
997
+ value: 7.763000000000001
998
+ - type: recall_at_1
999
+ value: 20.025000000000002
1000
+ - type: recall_at_10
1001
+ value: 42.954
1002
+ - type: recall_at_100
1003
+ value: 64.67500000000001
1004
+ - type: recall_at_1000
1005
+ value: 85.301
1006
+ - type: recall_at_3
1007
+ value: 30.892999999999997
1008
+ - type: recall_at_5
1009
+ value: 34.288000000000004
1010
+ - task:
1011
+ type: Retrieval
1012
+ dataset:
1013
+ name: MTEB ClimateFEVER
1014
+ type: climate-fever
1015
+ config: default
1016
+ split: test
1017
+ revision: None
1018
+ metrics:
1019
+ - type: map_at_1
1020
+ value: 10.079
1021
+ - type: map_at_10
1022
+ value: 16.930999999999997
1023
+ - type: map_at_100
1024
+ value: 18.398999999999997
1025
+ - type: map_at_1000
1026
+ value: 18.561
1027
+ - type: map_at_3
1028
+ value: 14.294
1029
+ - type: map_at_5
1030
+ value: 15.579
1031
+ - type: mrr_at_1
1032
+ value: 22.606
1033
+ - type: mrr_at_10
1034
+ value: 32.513
1035
+ - type: mrr_at_100
1036
+ value: 33.463
1037
+ - type: mrr_at_1000
1038
+ value: 33.513999999999996
1039
+ - type: mrr_at_3
1040
+ value: 29.479
1041
+ - type: mrr_at_5
1042
+ value: 31.3
1043
+ - type: ndcg_at_1
1044
+ value: 22.606
1045
+ - type: ndcg_at_10
1046
+ value: 24.053
1047
+ - type: ndcg_at_100
1048
+ value: 30.258000000000003
1049
+ - type: ndcg_at_1000
1050
+ value: 33.516
1051
+ - type: ndcg_at_3
1052
+ value: 19.721
1053
+ - type: ndcg_at_5
1054
+ value: 21.144
1055
+ - type: precision_at_1
1056
+ value: 22.606
1057
+ - type: precision_at_10
1058
+ value: 7.55
1059
+ - type: precision_at_100
1060
+ value: 1.399
1061
+ - type: precision_at_1000
1062
+ value: 0.2
1063
+ - type: precision_at_3
1064
+ value: 14.701
1065
+ - type: precision_at_5
1066
+ value: 11.192
1067
+ - type: recall_at_1
1068
+ value: 10.079
1069
+ - type: recall_at_10
1070
+ value: 28.970000000000002
1071
+ - type: recall_at_100
1072
+ value: 50.805
1073
+ - type: recall_at_1000
1074
+ value: 69.378
1075
+ - type: recall_at_3
1076
+ value: 18.199
1077
+ - type: recall_at_5
1078
+ value: 22.442
1079
+ - task:
1080
+ type: Retrieval
1081
+ dataset:
1082
+ name: MTEB DBPedia
1083
+ type: dbpedia-entity
1084
+ config: default
1085
+ split: test
1086
+ revision: None
1087
+ metrics:
1088
+ - type: map_at_1
1089
+ value: 7.794
1090
+ - type: map_at_10
1091
+ value: 15.165999999999999
1092
+ - type: map_at_100
1093
+ value: 20.508000000000003
1094
+ - type: map_at_1000
1095
+ value: 21.809
1096
+ - type: map_at_3
1097
+ value: 11.568000000000001
1098
+ - type: map_at_5
1099
+ value: 13.059000000000001
1100
+ - type: mrr_at_1
1101
+ value: 56.49999999999999
1102
+ - type: mrr_at_10
1103
+ value: 65.90899999999999
1104
+ - type: mrr_at_100
1105
+ value: 66.352
1106
+ - type: mrr_at_1000
1107
+ value: 66.369
1108
+ - type: mrr_at_3
1109
+ value: 64.0
1110
+ - type: mrr_at_5
1111
+ value: 65.10000000000001
1112
+ - type: ndcg_at_1
1113
+ value: 44.25
1114
+ - type: ndcg_at_10
1115
+ value: 32.649
1116
+ - type: ndcg_at_100
1117
+ value: 36.668
1118
+ - type: ndcg_at_1000
1119
+ value: 43.918
1120
+ - type: ndcg_at_3
1121
+ value: 37.096000000000004
1122
+ - type: ndcg_at_5
1123
+ value: 34.048
1124
+ - type: precision_at_1
1125
+ value: 56.49999999999999
1126
+ - type: precision_at_10
1127
+ value: 25.45
1128
+ - type: precision_at_100
1129
+ value: 8.055
1130
+ - type: precision_at_1000
1131
+ value: 1.7489999999999999
1132
+ - type: precision_at_3
1133
+ value: 41.0
1134
+ - type: precision_at_5
1135
+ value: 32.85
1136
+ - type: recall_at_1
1137
+ value: 7.794
1138
+ - type: recall_at_10
1139
+ value: 20.101
1140
+ - type: recall_at_100
1141
+ value: 42.448
1142
+ - type: recall_at_1000
1143
+ value: 65.88000000000001
1144
+ - type: recall_at_3
1145
+ value: 12.753
1146
+ - type: recall_at_5
1147
+ value: 15.307
1148
+ - task:
1149
+ type: Classification
1150
+ dataset:
1151
+ name: MTEB EmotionClassification
1152
+ type: mteb/emotion
1153
+ config: default
1154
+ split: test
1155
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1156
+ metrics:
1157
+ - type: accuracy
1158
+ value: 44.01
1159
+ - type: f1
1160
+ value: 38.659680951114964
1161
+ - task:
1162
+ type: Retrieval
1163
+ dataset:
1164
+ name: MTEB FEVER
1165
+ type: fever
1166
+ config: default
1167
+ split: test
1168
+ revision: None
1169
+ metrics:
1170
+ - type: map_at_1
1171
+ value: 49.713
1172
+ - type: map_at_10
1173
+ value: 61.79
1174
+ - type: map_at_100
1175
+ value: 62.28
1176
+ - type: map_at_1000
1177
+ value: 62.297000000000004
1178
+ - type: map_at_3
1179
+ value: 59.361
1180
+ - type: map_at_5
1181
+ value: 60.92100000000001
1182
+ - type: mrr_at_1
1183
+ value: 53.405
1184
+ - type: mrr_at_10
1185
+ value: 65.79899999999999
1186
+ - type: mrr_at_100
1187
+ value: 66.219
1188
+ - type: mrr_at_1000
1189
+ value: 66.227
1190
+ - type: mrr_at_3
1191
+ value: 63.431000000000004
1192
+ - type: mrr_at_5
1193
+ value: 64.98
1194
+ - type: ndcg_at_1
1195
+ value: 53.405
1196
+ - type: ndcg_at_10
1197
+ value: 68.01899999999999
1198
+ - type: ndcg_at_100
1199
+ value: 70.197
1200
+ - type: ndcg_at_1000
1201
+ value: 70.571
1202
+ - type: ndcg_at_3
1203
+ value: 63.352
1204
+ - type: ndcg_at_5
1205
+ value: 66.018
1206
+ - type: precision_at_1
1207
+ value: 53.405
1208
+ - type: precision_at_10
1209
+ value: 9.119
1210
+ - type: precision_at_100
1211
+ value: 1.03
1212
+ - type: precision_at_1000
1213
+ value: 0.107
1214
+ - type: precision_at_3
1215
+ value: 25.602999999999998
1216
+ - type: precision_at_5
1217
+ value: 16.835
1218
+ - type: recall_at_1
1219
+ value: 49.713
1220
+ - type: recall_at_10
1221
+ value: 83.306
1222
+ - type: recall_at_100
1223
+ value: 92.92
1224
+ - type: recall_at_1000
1225
+ value: 95.577
1226
+ - type: recall_at_3
1227
+ value: 70.798
1228
+ - type: recall_at_5
1229
+ value: 77.254
1230
+ - task:
1231
+ type: Retrieval
1232
+ dataset:
1233
+ name: MTEB FiQA2018
1234
+ type: fiqa
1235
+ config: default
1236
+ split: test
1237
+ revision: None
1238
+ metrics:
1239
+ - type: map_at_1
1240
+ value: 15.310000000000002
1241
+ - type: map_at_10
1242
+ value: 26.204
1243
+ - type: map_at_100
1244
+ value: 27.932000000000002
1245
+ - type: map_at_1000
1246
+ value: 28.121000000000002
1247
+ - type: map_at_3
1248
+ value: 22.481
1249
+ - type: map_at_5
1250
+ value: 24.678
1251
+ - type: mrr_at_1
1252
+ value: 29.784
1253
+ - type: mrr_at_10
1254
+ value: 39.582
1255
+ - type: mrr_at_100
1256
+ value: 40.52
1257
+ - type: mrr_at_1000
1258
+ value: 40.568
1259
+ - type: mrr_at_3
1260
+ value: 37.114000000000004
1261
+ - type: mrr_at_5
1262
+ value: 38.596000000000004
1263
+ - type: ndcg_at_1
1264
+ value: 29.784
1265
+ - type: ndcg_at_10
1266
+ value: 33.432
1267
+ - type: ndcg_at_100
1268
+ value: 40.281
1269
+ - type: ndcg_at_1000
1270
+ value: 43.653999999999996
1271
+ - type: ndcg_at_3
1272
+ value: 29.612
1273
+ - type: ndcg_at_5
1274
+ value: 31.223
1275
+ - type: precision_at_1
1276
+ value: 29.784
1277
+ - type: precision_at_10
1278
+ value: 9.645
1279
+ - type: precision_at_100
1280
+ value: 1.645
1281
+ - type: precision_at_1000
1282
+ value: 0.22499999999999998
1283
+ - type: precision_at_3
1284
+ value: 20.165
1285
+ - type: precision_at_5
1286
+ value: 15.401000000000002
1287
+ - type: recall_at_1
1288
+ value: 15.310000000000002
1289
+ - type: recall_at_10
1290
+ value: 40.499
1291
+ - type: recall_at_100
1292
+ value: 66.643
1293
+ - type: recall_at_1000
1294
+ value: 87.059
1295
+ - type: recall_at_3
1296
+ value: 27.492
1297
+ - type: recall_at_5
1298
+ value: 33.748
1299
+ - task:
1300
+ type: Retrieval
1301
+ dataset:
1302
+ name: MTEB HotpotQA
1303
+ type: hotpotqa
1304
+ config: default
1305
+ split: test
1306
+ revision: None
1307
+ metrics:
1308
+ - type: map_at_1
1309
+ value: 33.599000000000004
1310
+ - type: map_at_10
1311
+ value: 47.347
1312
+ - type: map_at_100
1313
+ value: 48.191
1314
+ - type: map_at_1000
1315
+ value: 48.263
1316
+ - type: map_at_3
1317
+ value: 44.698
1318
+ - type: map_at_5
1319
+ value: 46.278999999999996
1320
+ - type: mrr_at_1
1321
+ value: 67.19800000000001
1322
+ - type: mrr_at_10
1323
+ value: 74.054
1324
+ - type: mrr_at_100
1325
+ value: 74.376
1326
+ - type: mrr_at_1000
1327
+ value: 74.392
1328
+ - type: mrr_at_3
1329
+ value: 72.849
1330
+ - type: mrr_at_5
1331
+ value: 73.643
1332
+ - type: ndcg_at_1
1333
+ value: 67.19800000000001
1334
+ - type: ndcg_at_10
1335
+ value: 56.482
1336
+ - type: ndcg_at_100
1337
+ value: 59.694
1338
+ - type: ndcg_at_1000
1339
+ value: 61.204
1340
+ - type: ndcg_at_3
1341
+ value: 52.43299999999999
1342
+ - type: ndcg_at_5
1343
+ value: 54.608000000000004
1344
+ - type: precision_at_1
1345
+ value: 67.19800000000001
1346
+ - type: precision_at_10
1347
+ value: 11.613999999999999
1348
+ - type: precision_at_100
1349
+ value: 1.415
1350
+ - type: precision_at_1000
1351
+ value: 0.16199999999999998
1352
+ - type: precision_at_3
1353
+ value: 32.726
1354
+ - type: precision_at_5
1355
+ value: 21.349999999999998
1356
+ - type: recall_at_1
1357
+ value: 33.599000000000004
1358
+ - type: recall_at_10
1359
+ value: 58.069
1360
+ - type: recall_at_100
1361
+ value: 70.736
1362
+ - type: recall_at_1000
1363
+ value: 80.804
1364
+ - type: recall_at_3
1365
+ value: 49.088
1366
+ - type: recall_at_5
1367
+ value: 53.376000000000005
1368
+ - task:
1369
+ type: Classification
1370
+ dataset:
1371
+ name: MTEB ImdbClassification
1372
+ type: mteb/imdb
1373
+ config: default
1374
+ split: test
1375
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1376
+ metrics:
1377
+ - type: accuracy
1378
+ value: 73.64359999999999
1379
+ - type: ap
1380
+ value: 67.54685976014599
1381
+ - type: f1
1382
+ value: 73.55148707559482
1383
+ - task:
1384
+ type: Retrieval
1385
+ dataset:
1386
+ name: MTEB MSMARCO
1387
+ type: msmarco
1388
+ config: default
1389
+ split: dev
1390
+ revision: None
1391
+ metrics:
1392
+ - type: map_at_1
1393
+ value: 19.502
1394
+ - type: map_at_10
1395
+ value: 30.816
1396
+ - type: map_at_100
1397
+ value: 32.007999999999996
1398
+ - type: map_at_1000
1399
+ value: 32.067
1400
+ - type: map_at_3
1401
+ value: 27.215
1402
+ - type: map_at_5
1403
+ value: 29.304000000000002
1404
+ - type: mrr_at_1
1405
+ value: 20.072000000000003
1406
+ - type: mrr_at_10
1407
+ value: 31.406
1408
+ - type: mrr_at_100
1409
+ value: 32.549
1410
+ - type: mrr_at_1000
1411
+ value: 32.602
1412
+ - type: mrr_at_3
1413
+ value: 27.839000000000002
1414
+ - type: mrr_at_5
1415
+ value: 29.926000000000002
1416
+ - type: ndcg_at_1
1417
+ value: 20.086000000000002
1418
+ - type: ndcg_at_10
1419
+ value: 37.282
1420
+ - type: ndcg_at_100
1421
+ value: 43.206
1422
+ - type: ndcg_at_1000
1423
+ value: 44.690000000000005
1424
+ - type: ndcg_at_3
1425
+ value: 29.932
1426
+ - type: ndcg_at_5
1427
+ value: 33.668
1428
+ - type: precision_at_1
1429
+ value: 20.086000000000002
1430
+ - type: precision_at_10
1431
+ value: 5.961
1432
+ - type: precision_at_100
1433
+ value: 0.898
1434
+ - type: precision_at_1000
1435
+ value: 0.10200000000000001
1436
+ - type: precision_at_3
1437
+ value: 12.856000000000002
1438
+ - type: precision_at_5
1439
+ value: 9.596
1440
+ - type: recall_at_1
1441
+ value: 19.502
1442
+ - type: recall_at_10
1443
+ value: 57.182
1444
+ - type: recall_at_100
1445
+ value: 84.952
1446
+ - type: recall_at_1000
1447
+ value: 96.34700000000001
1448
+ - type: recall_at_3
1449
+ value: 37.193
1450
+ - type: recall_at_5
1451
+ value: 46.157
1452
+ - task:
1453
+ type: Classification
1454
+ dataset:
1455
+ name: MTEB MTOPDomainClassification (en)
1456
+ type: mteb/mtop_domain
1457
+ config: en
1458
+ split: test
1459
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1460
+ metrics:
1461
+ - type: accuracy
1462
+ value: 93.96488828089375
1463
+ - type: f1
1464
+ value: 93.32119260543482
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ name: MTEB MTOPIntentClassification (en)
1469
+ type: mteb/mtop_intent
1470
+ config: en
1471
+ split: test
1472
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 72.4965800273598
1476
+ - type: f1
1477
+ value: 49.34896217536082
1478
+ - task:
1479
+ type: Classification
1480
+ dataset:
1481
+ name: MTEB MassiveIntentClassification (en)
1482
+ type: mteb/amazon_massive_intent
1483
+ config: en
1484
+ split: test
1485
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1486
+ metrics:
1487
+ - type: accuracy
1488
+ value: 67.60928043039678
1489
+ - type: f1
1490
+ value: 64.34244712074538
1491
+ - task:
1492
+ type: Classification
1493
+ dataset:
1494
+ name: MTEB MassiveScenarioClassification (en)
1495
+ type: mteb/amazon_massive_scenario
1496
+ config: en
1497
+ split: test
1498
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1499
+ metrics:
1500
+ - type: accuracy
1501
+ value: 69.75453934095493
1502
+ - type: f1
1503
+ value: 68.39224867489249
1504
+ - task:
1505
+ type: Clustering
1506
+ dataset:
1507
+ name: MTEB MedrxivClusteringP2P
1508
+ type: mteb/medrxiv-clustering-p2p
1509
+ config: default
1510
+ split: test
1511
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1512
+ metrics:
1513
+ - type: v_measure
1514
+ value: 31.862573504920082
1515
+ - task:
1516
+ type: Clustering
1517
+ dataset:
1518
+ name: MTEB MedrxivClusteringS2S
1519
+ type: mteb/medrxiv-clustering-s2s
1520
+ config: default
1521
+ split: test
1522
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1523
+ metrics:
1524
+ - type: v_measure
1525
+ value: 27.511123551196803
1526
+ - task:
1527
+ type: Reranking
1528
+ dataset:
1529
+ name: MTEB MindSmallReranking
1530
+ type: mteb/mind_small
1531
+ config: default
1532
+ split: test
1533
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1534
+ metrics:
1535
+ - type: map
1536
+ value: 30.99145104942086
1537
+ - type: mrr
1538
+ value: 32.03606480418627
1539
+ - task:
1540
+ type: Retrieval
1541
+ dataset:
1542
+ name: MTEB NFCorpus
1543
+ type: nfcorpus
1544
+ config: default
1545
+ split: test
1546
+ revision: None
1547
+ metrics:
1548
+ - type: map_at_1
1549
+ value: 5.015
1550
+ - type: map_at_10
1551
+ value: 11.054
1552
+ - type: map_at_100
1553
+ value: 13.773
1554
+ - type: map_at_1000
1555
+ value: 15.082999999999998
1556
+ - type: map_at_3
1557
+ value: 8.253
1558
+ - type: map_at_5
1559
+ value: 9.508999999999999
1560
+ - type: mrr_at_1
1561
+ value: 42.105
1562
+ - type: mrr_at_10
1563
+ value: 50.44499999999999
1564
+ - type: mrr_at_100
1565
+ value: 51.080000000000005
1566
+ - type: mrr_at_1000
1567
+ value: 51.129999999999995
1568
+ - type: mrr_at_3
1569
+ value: 48.555
1570
+ - type: mrr_at_5
1571
+ value: 49.84
1572
+ - type: ndcg_at_1
1573
+ value: 40.402
1574
+ - type: ndcg_at_10
1575
+ value: 30.403000000000002
1576
+ - type: ndcg_at_100
1577
+ value: 28.216
1578
+ - type: ndcg_at_1000
1579
+ value: 37.021
1580
+ - type: ndcg_at_3
1581
+ value: 35.53
1582
+ - type: ndcg_at_5
1583
+ value: 33.202999999999996
1584
+ - type: precision_at_1
1585
+ value: 42.105
1586
+ - type: precision_at_10
1587
+ value: 22.353
1588
+ - type: precision_at_100
1589
+ value: 7.266
1590
+ - type: precision_at_1000
1591
+ value: 2.011
1592
+ - type: precision_at_3
1593
+ value: 32.921
1594
+ - type: precision_at_5
1595
+ value: 28.297
1596
+ - type: recall_at_1
1597
+ value: 5.015
1598
+ - type: recall_at_10
1599
+ value: 14.393
1600
+ - type: recall_at_100
1601
+ value: 28.893
1602
+ - type: recall_at_1000
1603
+ value: 60.18
1604
+ - type: recall_at_3
1605
+ value: 9.184000000000001
1606
+ - type: recall_at_5
1607
+ value: 11.39
1608
+ - task:
1609
+ type: Retrieval
1610
+ dataset:
1611
+ name: MTEB NQ
1612
+ type: nq
1613
+ config: default
1614
+ split: test
1615
+ revision: None
1616
+ metrics:
1617
+ - type: map_at_1
1618
+ value: 29.524
1619
+ - type: map_at_10
1620
+ value: 44.182
1621
+ - type: map_at_100
1622
+ value: 45.228
1623
+ - type: map_at_1000
1624
+ value: 45.265
1625
+ - type: map_at_3
1626
+ value: 39.978
1627
+ - type: map_at_5
1628
+ value: 42.482
1629
+ - type: mrr_at_1
1630
+ value: 33.256
1631
+ - type: mrr_at_10
1632
+ value: 46.661
1633
+ - type: mrr_at_100
1634
+ value: 47.47
1635
+ - type: mrr_at_1000
1636
+ value: 47.496
1637
+ - type: mrr_at_3
1638
+ value: 43.187999999999995
1639
+ - type: mrr_at_5
1640
+ value: 45.330999999999996
1641
+ - type: ndcg_at_1
1642
+ value: 33.227000000000004
1643
+ - type: ndcg_at_10
1644
+ value: 51.589
1645
+ - type: ndcg_at_100
1646
+ value: 56.043
1647
+ - type: ndcg_at_1000
1648
+ value: 56.937000000000005
1649
+ - type: ndcg_at_3
1650
+ value: 43.751
1651
+ - type: ndcg_at_5
1652
+ value: 47.937000000000005
1653
+ - type: precision_at_1
1654
+ value: 33.227000000000004
1655
+ - type: precision_at_10
1656
+ value: 8.556999999999999
1657
+ - type: precision_at_100
1658
+ value: 1.103
1659
+ - type: precision_at_1000
1660
+ value: 0.11900000000000001
1661
+ - type: precision_at_3
1662
+ value: 19.921
1663
+ - type: precision_at_5
1664
+ value: 14.396999999999998
1665
+ - type: recall_at_1
1666
+ value: 29.524
1667
+ - type: recall_at_10
1668
+ value: 71.615
1669
+ - type: recall_at_100
1670
+ value: 91.056
1671
+ - type: recall_at_1000
1672
+ value: 97.72800000000001
1673
+ - type: recall_at_3
1674
+ value: 51.451
1675
+ - type: recall_at_5
1676
+ value: 61.119
1677
+ - task:
1678
+ type: Retrieval
1679
+ dataset:
1680
+ name: MTEB QuoraRetrieval
1681
+ type: quora
1682
+ config: default
1683
+ split: test
1684
+ revision: None
1685
+ metrics:
1686
+ - type: map_at_1
1687
+ value: 69.596
1688
+ - type: map_at_10
1689
+ value: 83.281
1690
+ - type: map_at_100
1691
+ value: 83.952
1692
+ - type: map_at_1000
1693
+ value: 83.97200000000001
1694
+ - type: map_at_3
1695
+ value: 80.315
1696
+ - type: map_at_5
1697
+ value: 82.223
1698
+ - type: mrr_at_1
1699
+ value: 80.17
1700
+ - type: mrr_at_10
1701
+ value: 86.522
1702
+ - type: mrr_at_100
1703
+ value: 86.644
1704
+ - type: mrr_at_1000
1705
+ value: 86.64500000000001
1706
+ - type: mrr_at_3
1707
+ value: 85.438
1708
+ - type: mrr_at_5
1709
+ value: 86.21799999999999
1710
+ - type: ndcg_at_1
1711
+ value: 80.19
1712
+ - type: ndcg_at_10
1713
+ value: 87.19
1714
+ - type: ndcg_at_100
1715
+ value: 88.567
1716
+ - type: ndcg_at_1000
1717
+ value: 88.70400000000001
1718
+ - type: ndcg_at_3
1719
+ value: 84.17999999999999
1720
+ - type: ndcg_at_5
1721
+ value: 85.931
1722
+ - type: precision_at_1
1723
+ value: 80.19
1724
+ - type: precision_at_10
1725
+ value: 13.209000000000001
1726
+ - type: precision_at_100
1727
+ value: 1.518
1728
+ - type: precision_at_1000
1729
+ value: 0.157
1730
+ - type: precision_at_3
1731
+ value: 36.717
1732
+ - type: precision_at_5
1733
+ value: 24.248
1734
+ - type: recall_at_1
1735
+ value: 69.596
1736
+ - type: recall_at_10
1737
+ value: 94.533
1738
+ - type: recall_at_100
1739
+ value: 99.322
1740
+ - type: recall_at_1000
1741
+ value: 99.965
1742
+ - type: recall_at_3
1743
+ value: 85.911
1744
+ - type: recall_at_5
1745
+ value: 90.809
1746
+ - task:
1747
+ type: Clustering
1748
+ dataset:
1749
+ name: MTEB RedditClustering
1750
+ type: mteb/reddit-clustering
1751
+ config: default
1752
+ split: test
1753
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1754
+ metrics:
1755
+ - type: v_measure
1756
+ value: 49.27650627571912
1757
+ - task:
1758
+ type: Clustering
1759
+ dataset:
1760
+ name: MTEB RedditClusteringP2P
1761
+ type: mteb/reddit-clustering-p2p
1762
+ config: default
1763
+ split: test
1764
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1765
+ metrics:
1766
+ - type: v_measure
1767
+ value: 57.08550946534183
1768
+ - task:
1769
+ type: Retrieval
1770
+ dataset:
1771
+ name: MTEB SCIDOCS
1772
+ type: scidocs
1773
+ config: default
1774
+ split: test
1775
+ revision: None
1776
+ metrics:
1777
+ - type: map_at_1
1778
+ value: 4.568
1779
+ - type: map_at_10
1780
+ value: 10.862
1781
+ - type: map_at_100
1782
+ value: 12.757
1783
+ - type: map_at_1000
1784
+ value: 13.031
1785
+ - type: map_at_3
1786
+ value: 7.960000000000001
1787
+ - type: map_at_5
1788
+ value: 9.337
1789
+ - type: mrr_at_1
1790
+ value: 22.5
1791
+ - type: mrr_at_10
1792
+ value: 32.6
1793
+ - type: mrr_at_100
1794
+ value: 33.603
1795
+ - type: mrr_at_1000
1796
+ value: 33.672000000000004
1797
+ - type: mrr_at_3
1798
+ value: 29.299999999999997
1799
+ - type: mrr_at_5
1800
+ value: 31.25
1801
+ - type: ndcg_at_1
1802
+ value: 22.5
1803
+ - type: ndcg_at_10
1804
+ value: 18.605
1805
+ - type: ndcg_at_100
1806
+ value: 26.029999999999998
1807
+ - type: ndcg_at_1000
1808
+ value: 31.256
1809
+ - type: ndcg_at_3
1810
+ value: 17.873
1811
+ - type: ndcg_at_5
1812
+ value: 15.511
1813
+ - type: precision_at_1
1814
+ value: 22.5
1815
+ - type: precision_at_10
1816
+ value: 9.58
1817
+ - type: precision_at_100
1818
+ value: 2.033
1819
+ - type: precision_at_1000
1820
+ value: 0.33
1821
+ - type: precision_at_3
1822
+ value: 16.633
1823
+ - type: precision_at_5
1824
+ value: 13.54
1825
+ - type: recall_at_1
1826
+ value: 4.568
1827
+ - type: recall_at_10
1828
+ value: 19.402
1829
+ - type: recall_at_100
1830
+ value: 41.277
1831
+ - type: recall_at_1000
1832
+ value: 66.963
1833
+ - type: recall_at_3
1834
+ value: 10.112
1835
+ - type: recall_at_5
1836
+ value: 13.712
1837
+ - task:
1838
+ type: STS
1839
+ dataset:
1840
+ name: MTEB SICK-R
1841
+ type: mteb/sickr-sts
1842
+ config: default
1843
+ split: test
1844
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1845
+ metrics:
1846
+ - type: cos_sim_pearson
1847
+ value: 83.31992291680787
1848
+ - type: cos_sim_spearman
1849
+ value: 76.7212346922664
1850
+ - type: euclidean_pearson
1851
+ value: 80.42189271706478
1852
+ - type: euclidean_spearman
1853
+ value: 76.7212342532493
1854
+ - type: manhattan_pearson
1855
+ value: 80.33171093031578
1856
+ - type: manhattan_spearman
1857
+ value: 76.63192883074694
1858
+ - task:
1859
+ type: STS
1860
+ dataset:
1861
+ name: MTEB STS12
1862
+ type: mteb/sts12-sts
1863
+ config: default
1864
+ split: test
1865
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1866
+ metrics:
1867
+ - type: cos_sim_pearson
1868
+ value: 83.16654278886763
1869
+ - type: cos_sim_spearman
1870
+ value: 73.66390263429565
1871
+ - type: euclidean_pearson
1872
+ value: 79.7485360086639
1873
+ - type: euclidean_spearman
1874
+ value: 73.66389870373436
1875
+ - type: manhattan_pearson
1876
+ value: 79.73652237443706
1877
+ - type: manhattan_spearman
1878
+ value: 73.65296117151647
1879
+ - task:
1880
+ type: STS
1881
+ dataset:
1882
+ name: MTEB STS13
1883
+ type: mteb/sts13-sts
1884
+ config: default
1885
+ split: test
1886
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1887
+ metrics:
1888
+ - type: cos_sim_pearson
1889
+ value: 82.40389689929246
1890
+ - type: cos_sim_spearman
1891
+ value: 83.29727595993955
1892
+ - type: euclidean_pearson
1893
+ value: 82.23970587854079
1894
+ - type: euclidean_spearman
1895
+ value: 83.29727595993955
1896
+ - type: manhattan_pearson
1897
+ value: 82.18823600831897
1898
+ - type: manhattan_spearman
1899
+ value: 83.20746192209594
1900
+ - task:
1901
+ type: STS
1902
+ dataset:
1903
+ name: MTEB STS14
1904
+ type: mteb/sts14-sts
1905
+ config: default
1906
+ split: test
1907
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1908
+ metrics:
1909
+ - type: cos_sim_pearson
1910
+ value: 81.73505246913413
1911
+ - type: cos_sim_spearman
1912
+ value: 79.1686548248754
1913
+ - type: euclidean_pearson
1914
+ value: 80.48889135993412
1915
+ - type: euclidean_spearman
1916
+ value: 79.16864112930354
1917
+ - type: manhattan_pearson
1918
+ value: 80.40720651057302
1919
+ - type: manhattan_spearman
1920
+ value: 79.0640155089286
1921
+ - task:
1922
+ type: STS
1923
+ dataset:
1924
+ name: MTEB STS15
1925
+ type: mteb/sts15-sts
1926
+ config: default
1927
+ split: test
1928
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1929
+ metrics:
1930
+ - type: cos_sim_pearson
1931
+ value: 86.3953512879065
1932
+ - type: cos_sim_spearman
1933
+ value: 87.29947322714338
1934
+ - type: euclidean_pearson
1935
+ value: 86.59759438529645
1936
+ - type: euclidean_spearman
1937
+ value: 87.29947511092824
1938
+ - type: manhattan_pearson
1939
+ value: 86.52097806169155
1940
+ - type: manhattan_spearman
1941
+ value: 87.22987242146534
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ name: MTEB STS16
1946
+ type: mteb/sts16-sts
1947
+ config: default
1948
+ split: test
1949
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 82.48565753792056
1953
+ - type: cos_sim_spearman
1954
+ value: 83.6049720319893
1955
+ - type: euclidean_pearson
1956
+ value: 82.56452023172913
1957
+ - type: euclidean_spearman
1958
+ value: 83.60490168191697
1959
+ - type: manhattan_pearson
1960
+ value: 82.58079941137872
1961
+ - type: manhattan_spearman
1962
+ value: 83.60975807374051
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ name: MTEB STS17 (en-en)
1967
+ type: mteb/sts17-crosslingual-sts
1968
+ config: en-en
1969
+ split: test
1970
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 88.18239976618212
1974
+ - type: cos_sim_spearman
1975
+ value: 88.23061724730616
1976
+ - type: euclidean_pearson
1977
+ value: 87.78482472776658
1978
+ - type: euclidean_spearman
1979
+ value: 88.23061724730616
1980
+ - type: manhattan_pearson
1981
+ value: 87.75059641730239
1982
+ - type: manhattan_spearman
1983
+ value: 88.22527413524622
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ name: MTEB STS22 (en)
1988
+ type: mteb/sts22-crosslingual-sts
1989
+ config: en
1990
+ split: test
1991
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 63.42816418706765
1995
+ - type: cos_sim_spearman
1996
+ value: 63.4569864520124
1997
+ - type: euclidean_pearson
1998
+ value: 64.35405409953853
1999
+ - type: euclidean_spearman
2000
+ value: 63.4569864520124
2001
+ - type: manhattan_pearson
2002
+ value: 63.96649236073056
2003
+ - type: manhattan_spearman
2004
+ value: 63.01448583722708
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ name: MTEB STSBenchmark
2009
+ type: mteb/stsbenchmark-sts
2010
+ config: default
2011
+ split: test
2012
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 83.41659638047614
2016
+ - type: cos_sim_spearman
2017
+ value: 84.03893866106175
2018
+ - type: euclidean_pearson
2019
+ value: 84.2251203953798
2020
+ - type: euclidean_spearman
2021
+ value: 84.03893866106175
2022
+ - type: manhattan_pearson
2023
+ value: 84.22733643205514
2024
+ - type: manhattan_spearman
2025
+ value: 84.06504411263612
2026
+ - task:
2027
+ type: Reranking
2028
+ dataset:
2029
+ name: MTEB SciDocsRR
2030
+ type: mteb/scidocs-reranking
2031
+ config: default
2032
+ split: test
2033
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2034
+ metrics:
2035
+ - type: map
2036
+ value: 79.75608022582414
2037
+ - type: mrr
2038
+ value: 94.0947732369301
2039
+ - task:
2040
+ type: Retrieval
2041
+ dataset:
2042
+ name: MTEB SciFact
2043
+ type: scifact
2044
+ config: default
2045
+ split: test
2046
+ revision: None
2047
+ metrics:
2048
+ - type: map_at_1
2049
+ value: 50.161
2050
+ - type: map_at_10
2051
+ value: 59.458999999999996
2052
+ - type: map_at_100
2053
+ value: 60.156
2054
+ - type: map_at_1000
2055
+ value: 60.194
2056
+ - type: map_at_3
2057
+ value: 56.45400000000001
2058
+ - type: map_at_5
2059
+ value: 58.165
2060
+ - type: mrr_at_1
2061
+ value: 53.333
2062
+ - type: mrr_at_10
2063
+ value: 61.050000000000004
2064
+ - type: mrr_at_100
2065
+ value: 61.586
2066
+ - type: mrr_at_1000
2067
+ value: 61.624
2068
+ - type: mrr_at_3
2069
+ value: 58.889
2070
+ - type: mrr_at_5
2071
+ value: 60.122
2072
+ - type: ndcg_at_1
2073
+ value: 53.333
2074
+ - type: ndcg_at_10
2075
+ value: 63.888999999999996
2076
+ - type: ndcg_at_100
2077
+ value: 66.963
2078
+ - type: ndcg_at_1000
2079
+ value: 68.062
2080
+ - type: ndcg_at_3
2081
+ value: 59.01
2082
+ - type: ndcg_at_5
2083
+ value: 61.373999999999995
2084
+ - type: precision_at_1
2085
+ value: 53.333
2086
+ - type: precision_at_10
2087
+ value: 8.633000000000001
2088
+ - type: precision_at_100
2089
+ value: 1.027
2090
+ - type: precision_at_1000
2091
+ value: 0.11199999999999999
2092
+ - type: precision_at_3
2093
+ value: 23.111
2094
+ - type: precision_at_5
2095
+ value: 15.467
2096
+ - type: recall_at_1
2097
+ value: 50.161
2098
+ - type: recall_at_10
2099
+ value: 75.922
2100
+ - type: recall_at_100
2101
+ value: 90.0
2102
+ - type: recall_at_1000
2103
+ value: 98.667
2104
+ - type: recall_at_3
2105
+ value: 62.90599999999999
2106
+ - type: recall_at_5
2107
+ value: 68.828
2108
+ - task:
2109
+ type: PairClassification
2110
+ dataset:
2111
+ name: MTEB SprintDuplicateQuestions
2112
+ type: mteb/sprintduplicatequestions-pairclassification
2113
+ config: default
2114
+ split: test
2115
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2116
+ metrics:
2117
+ - type: cos_sim_accuracy
2118
+ value: 99.81188118811882
2119
+ - type: cos_sim_ap
2120
+ value: 95.11619225962413
2121
+ - type: cos_sim_f1
2122
+ value: 90.35840484603736
2123
+ - type: cos_sim_precision
2124
+ value: 91.23343527013252
2125
+ - type: cos_sim_recall
2126
+ value: 89.5
2127
+ - type: dot_accuracy
2128
+ value: 99.81188118811882
2129
+ - type: dot_ap
2130
+ value: 95.11619225962413
2131
+ - type: dot_f1
2132
+ value: 90.35840484603736
2133
+ - type: dot_precision
2134
+ value: 91.23343527013252
2135
+ - type: dot_recall
2136
+ value: 89.5
2137
+ - type: euclidean_accuracy
2138
+ value: 99.81188118811882
2139
+ - type: euclidean_ap
2140
+ value: 95.11619225962413
2141
+ - type: euclidean_f1
2142
+ value: 90.35840484603736
2143
+ - type: euclidean_precision
2144
+ value: 91.23343527013252
2145
+ - type: euclidean_recall
2146
+ value: 89.5
2147
+ - type: manhattan_accuracy
2148
+ value: 99.80891089108911
2149
+ - type: manhattan_ap
2150
+ value: 95.07294266220966
2151
+ - type: manhattan_f1
2152
+ value: 90.21794221996959
2153
+ - type: manhattan_precision
2154
+ value: 91.46968139773895
2155
+ - type: manhattan_recall
2156
+ value: 89.0
2157
+ - type: max_accuracy
2158
+ value: 99.81188118811882
2159
+ - type: max_ap
2160
+ value: 95.11619225962413
2161
+ - type: max_f1
2162
+ value: 90.35840484603736
2163
+ - task:
2164
+ type: Clustering
2165
+ dataset:
2166
+ name: MTEB StackExchangeClustering
2167
+ type: mteb/stackexchange-clustering
2168
+ config: default
2169
+ split: test
2170
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2171
+ metrics:
2172
+ - type: v_measure
2173
+ value: 55.3481874105239
2174
+ - task:
2175
+ type: Clustering
2176
+ dataset:
2177
+ name: MTEB StackExchangeClusteringP2P
2178
+ type: mteb/stackexchange-clustering-p2p
2179
+ config: default
2180
+ split: test
2181
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2182
+ metrics:
2183
+ - type: v_measure
2184
+ value: 34.421291695525
2185
+ - task:
2186
+ type: Reranking
2187
+ dataset:
2188
+ name: MTEB StackOverflowDupQuestions
2189
+ type: mteb/stackoverflowdupquestions-reranking
2190
+ config: default
2191
+ split: test
2192
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2193
+ metrics:
2194
+ - type: map
2195
+ value: 49.98746633276634
2196
+ - type: mrr
2197
+ value: 50.63143249724133
2198
+ - task:
2199
+ type: Summarization
2200
+ dataset:
2201
+ name: MTEB SummEval
2202
+ type: mteb/summeval
2203
+ config: default
2204
+ split: test
2205
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2206
+ metrics:
2207
+ - type: cos_sim_pearson
2208
+ value: 31.009961979844036
2209
+ - type: cos_sim_spearman
2210
+ value: 30.558416108881044
2211
+ - type: dot_pearson
2212
+ value: 31.009964941134253
2213
+ - type: dot_spearman
2214
+ value: 30.545760761761393
2215
+ - task:
2216
+ type: Retrieval
2217
+ dataset:
2218
+ name: MTEB TRECCOVID
2219
+ type: trec-covid
2220
+ config: default
2221
+ split: test
2222
+ revision: None
2223
+ metrics:
2224
+ - type: map_at_1
2225
+ value: 0.207
2226
+ - type: map_at_10
2227
+ value: 1.6
2228
+ - type: map_at_100
2229
+ value: 8.594
2230
+ - type: map_at_1000
2231
+ value: 20.213
2232
+ - type: map_at_3
2233
+ value: 0.585
2234
+ - type: map_at_5
2235
+ value: 0.9039999999999999
2236
+ - type: mrr_at_1
2237
+ value: 78.0
2238
+ - type: mrr_at_10
2239
+ value: 87.4
2240
+ - type: mrr_at_100
2241
+ value: 87.4
2242
+ - type: mrr_at_1000
2243
+ value: 87.4
2244
+ - type: mrr_at_3
2245
+ value: 86.667
2246
+ - type: mrr_at_5
2247
+ value: 87.06700000000001
2248
+ - type: ndcg_at_1
2249
+ value: 73.0
2250
+ - type: ndcg_at_10
2251
+ value: 65.18
2252
+ - type: ndcg_at_100
2253
+ value: 49.631
2254
+ - type: ndcg_at_1000
2255
+ value: 43.498999999999995
2256
+ - type: ndcg_at_3
2257
+ value: 71.83800000000001
2258
+ - type: ndcg_at_5
2259
+ value: 69.271
2260
+ - type: precision_at_1
2261
+ value: 78.0
2262
+ - type: precision_at_10
2263
+ value: 69.19999999999999
2264
+ - type: precision_at_100
2265
+ value: 50.980000000000004
2266
+ - type: precision_at_1000
2267
+ value: 19.426
2268
+ - type: precision_at_3
2269
+ value: 77.333
2270
+ - type: precision_at_5
2271
+ value: 74.0
2272
+ - type: recall_at_1
2273
+ value: 0.207
2274
+ - type: recall_at_10
2275
+ value: 1.822
2276
+ - type: recall_at_100
2277
+ value: 11.849
2278
+ - type: recall_at_1000
2279
+ value: 40.492
2280
+ - type: recall_at_3
2281
+ value: 0.622
2282
+ - type: recall_at_5
2283
+ value: 0.9809999999999999
2284
+ - task:
2285
+ type: Retrieval
2286
+ dataset:
2287
+ name: MTEB Touche2020
2288
+ type: webis-touche2020
2289
+ config: default
2290
+ split: test
2291
+ revision: None
2292
+ metrics:
2293
+ - type: map_at_1
2294
+ value: 2.001
2295
+ - type: map_at_10
2296
+ value: 10.376000000000001
2297
+ - type: map_at_100
2298
+ value: 16.936999999999998
2299
+ - type: map_at_1000
2300
+ value: 18.615000000000002
2301
+ - type: map_at_3
2302
+ value: 5.335999999999999
2303
+ - type: map_at_5
2304
+ value: 7.374
2305
+ - type: mrr_at_1
2306
+ value: 20.408
2307
+ - type: mrr_at_10
2308
+ value: 38.29
2309
+ - type: mrr_at_100
2310
+ value: 39.33
2311
+ - type: mrr_at_1000
2312
+ value: 39.347
2313
+ - type: mrr_at_3
2314
+ value: 32.993
2315
+ - type: mrr_at_5
2316
+ value: 36.973
2317
+ - type: ndcg_at_1
2318
+ value: 17.347
2319
+ - type: ndcg_at_10
2320
+ value: 23.515
2321
+ - type: ndcg_at_100
2322
+ value: 37.457
2323
+ - type: ndcg_at_1000
2324
+ value: 49.439
2325
+ - type: ndcg_at_3
2326
+ value: 22.762999999999998
2327
+ - type: ndcg_at_5
2328
+ value: 22.622
2329
+ - type: precision_at_1
2330
+ value: 20.408
2331
+ - type: precision_at_10
2332
+ value: 22.448999999999998
2333
+ - type: precision_at_100
2334
+ value: 8.184
2335
+ - type: precision_at_1000
2336
+ value: 1.608
2337
+ - type: precision_at_3
2338
+ value: 25.85
2339
+ - type: precision_at_5
2340
+ value: 25.306
2341
+ - type: recall_at_1
2342
+ value: 2.001
2343
+ - type: recall_at_10
2344
+ value: 17.422
2345
+ - type: recall_at_100
2346
+ value: 51.532999999999994
2347
+ - type: recall_at_1000
2348
+ value: 87.466
2349
+ - type: recall_at_3
2350
+ value: 6.861000000000001
2351
+ - type: recall_at_5
2352
+ value: 10.502
2353
+ - task:
2354
+ type: Classification
2355
+ dataset:
2356
+ name: MTEB ToxicConversationsClassification
2357
+ type: mteb/toxic_conversations_50k
2358
+ config: default
2359
+ split: test
2360
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2361
+ metrics:
2362
+ - type: accuracy
2363
+ value: 71.54419999999999
2364
+ - type: ap
2365
+ value: 14.372170450843907
2366
+ - type: f1
2367
+ value: 54.94420257390529
2368
+ - task:
2369
+ type: Classification
2370
+ dataset:
2371
+ name: MTEB TweetSentimentExtractionClassification
2372
+ type: mteb/tweet_sentiment_extraction
2373
+ config: default
2374
+ split: test
2375
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2376
+ metrics:
2377
+ - type: accuracy
2378
+ value: 59.402942840973395
2379
+ - type: f1
2380
+ value: 59.4166538875571
2381
+ - task:
2382
+ type: Clustering
2383
+ dataset:
2384
+ name: MTEB TwentyNewsgroupsClustering
2385
+ type: mteb/twentynewsgroups-clustering
2386
+ config: default
2387
+ split: test
2388
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2389
+ metrics:
2390
+ - type: v_measure
2391
+ value: 41.569064336457906
2392
+ - task:
2393
+ type: PairClassification
2394
+ dataset:
2395
+ name: MTEB TwitterSemEval2015
2396
+ type: mteb/twittersemeval2015-pairclassification
2397
+ config: default
2398
+ split: test
2399
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2400
+ metrics:
2401
+ - type: cos_sim_accuracy
2402
+ value: 85.31322644096085
2403
+ - type: cos_sim_ap
2404
+ value: 72.14518894837381
2405
+ - type: cos_sim_f1
2406
+ value: 66.67489813557229
2407
+ - type: cos_sim_precision
2408
+ value: 62.65954977953121
2409
+ - type: cos_sim_recall
2410
+ value: 71.2401055408971
2411
+ - type: dot_accuracy
2412
+ value: 85.31322644096085
2413
+ - type: dot_ap
2414
+ value: 72.14521480685293
2415
+ - type: dot_f1
2416
+ value: 66.67489813557229
2417
+ - type: dot_precision
2418
+ value: 62.65954977953121
2419
+ - type: dot_recall
2420
+ value: 71.2401055408971
2421
+ - type: euclidean_accuracy
2422
+ value: 85.31322644096085
2423
+ - type: euclidean_ap
2424
+ value: 72.14520820485349
2425
+ - type: euclidean_f1
2426
+ value: 66.67489813557229
2427
+ - type: euclidean_precision
2428
+ value: 62.65954977953121
2429
+ - type: euclidean_recall
2430
+ value: 71.2401055408971
2431
+ - type: manhattan_accuracy
2432
+ value: 85.21785778148656
2433
+ - type: manhattan_ap
2434
+ value: 72.01177147657364
2435
+ - type: manhattan_f1
2436
+ value: 66.62594673833374
2437
+ - type: manhattan_precision
2438
+ value: 62.0336669699727
2439
+ - type: manhattan_recall
2440
+ value: 71.95250659630607
2441
+ - type: max_accuracy
2442
+ value: 85.31322644096085
2443
+ - type: max_ap
2444
+ value: 72.14521480685293
2445
+ - type: max_f1
2446
+ value: 66.67489813557229
2447
+ - task:
2448
+ type: PairClassification
2449
+ dataset:
2450
+ name: MTEB TwitterURLCorpus
2451
+ type: mteb/twitterurlcorpus-pairclassification
2452
+ config: default
2453
+ split: test
2454
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2455
+ metrics:
2456
+ - type: cos_sim_accuracy
2457
+ value: 89.12756626693057
2458
+ - type: cos_sim_ap
2459
+ value: 86.05430786440826
2460
+ - type: cos_sim_f1
2461
+ value: 78.27759692216631
2462
+ - type: cos_sim_precision
2463
+ value: 75.33466248931929
2464
+ - type: cos_sim_recall
2465
+ value: 81.45980905451185
2466
+ - type: dot_accuracy
2467
+ value: 89.12950673341872
2468
+ - type: dot_ap
2469
+ value: 86.05431161145492
2470
+ - type: dot_f1
2471
+ value: 78.27759692216631
2472
+ - type: dot_precision
2473
+ value: 75.33466248931929
2474
+ - type: dot_recall
2475
+ value: 81.45980905451185
2476
+ - type: euclidean_accuracy
2477
+ value: 89.12756626693057
2478
+ - type: euclidean_ap
2479
+ value: 86.05431303247397
2480
+ - type: euclidean_f1
2481
+ value: 78.27759692216631
2482
+ - type: euclidean_precision
2483
+ value: 75.33466248931929
2484
+ - type: euclidean_recall
2485
+ value: 81.45980905451185
2486
+ - type: manhattan_accuracy
2487
+ value: 89.04994760740482
2488
+ - type: manhattan_ap
2489
+ value: 86.00860610892074
2490
+ - type: manhattan_f1
2491
+ value: 78.1846776005392
2492
+ - type: manhattan_precision
2493
+ value: 76.10438839480975
2494
+ - type: manhattan_recall
2495
+ value: 80.3818909762858
2496
+ - type: max_accuracy
2497
+ value: 89.12950673341872
2498
+ - type: max_ap
2499
+ value: 86.05431303247397
2500
+ - type: max_f1
2501
+ value: 78.27759692216631
2502
+ ---
2503
+
2504
+ # djuna/jina-embeddings-v2-small-en-Q5_K_M-GGUF
2505
+ This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2506
+ Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-small-en) for more details on the model.
2507
+
2508
+ ## Use with llama.cpp
2509
+ Install llama.cpp through brew (works on Mac and Linux)
2510
+
2511
+ ```bash
2512
+ brew install llama.cpp
2513
+
2514
+ ```
2515
+ Invoke the llama.cpp server or the CLI.
2516
+
2517
+ ### CLI:
2518
+ ```bash
2519
+ llama-cli --hf-repo djuna/jina-embeddings-v2-small-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-small-en-q5_k_m.gguf -p "The meaning to life and the universe is"
2520
+ ```
2521
+
2522
+ ### Server:
2523
+ ```bash
2524
+ llama-server --hf-repo djuna/jina-embeddings-v2-small-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-small-en-q5_k_m.gguf -c 2048
2525
+ ```
2526
+
2527
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2528
+
2529
+ Step 1: Clone llama.cpp from GitHub.
2530
+ ```
2531
+ git clone https://github.com/ggerganov/llama.cpp
2532
+ ```
2533
+
2534
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2535
+ ```
2536
+ cd llama.cpp && LLAMA_CURL=1 make
2537
+ ```
2538
+
2539
+ Step 3: Run inference through the main binary.
2540
+ ```
2541
+ ./llama-cli --hf-repo djuna/jina-embeddings-v2-small-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-small-en-q5_k_m.gguf -p "The meaning to life and the universe is"
2542
+ ```
2543
+ or
2544
+ ```
2545
+ ./llama-server --hf-repo djuna/jina-embeddings-v2-small-en-Q5_K_M-GGUF --hf-file jina-embeddings-v2-small-en-q5_k_m.gguf -c 2048
2546
+ ```