File size: 4,406 Bytes
1772cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2023-10-05T07:20:29.202015200Z",
"start_time": "2023-10-05T07:20:29.190080700Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n",
"0\n",
"<torch.cuda.device object at 0x0000028DAB1DB580>\n",
"1\n",
"NVIDIA GeForce RTX 3090\n"
]
}
],
"source": [
"import torch\n",
"\n",
"print(torch.cuda.is_available()) # Returns a bool indicating if CUDA is currently available.\n",
"print(torch.cuda.current_device()) # Returns the index of a currently selected device.\n",
"print(torch.cuda.device(0)) # Context-manager that changes the selected device.\n",
"print(torch.cuda.device_count()) # Returns the number of GPUs available.\n",
"print(torch.cuda.get_device_name(0)) # Gets the name of a device."
]
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-10-05 10:37:05,350 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-PER, S-LOC, B-MISC, E-MISC, B-ORG, E-ORG, I-ORG, I-PER, B-LOC, I-LOC, E-LOC, I-MISC, <START>, <STOP>\n",
"non_holiday_pred [{'entity_group': 'PER', 'word': 'George Washington', 'start': 0, 'end': 17, 'score': 0.9970293045043945}, {'entity_group': 'LOC', 'word': 'Washington', 'start': 28, 'end': 38, 'score': 0.9996309280395508}]\n"
]
}
],
"source": [
"from handler import EndpointHandler\n",
"\n",
"# init handler\n",
"my_handler = EndpointHandler(path=\".\")\n",
"\n",
"# prepare sample payload\n",
"non_holiday_payload = {\"inputs\": \"George Washington ging naar Washington\"}\n",
"\n",
"\n",
"# test the handler\n",
"non_holiday_pred=my_handler(non_holiday_payload)\n",
"\n",
"\n",
"# show results\n",
"print(\"non_holiday_pred\", non_holiday_pred)\n",
"\n"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-05T07:37:05.789680900Z",
"start_time": "2023-10-05T07:37:03.091564500Z"
}
},
"id": "a12c4a4792afc707"
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"from typing import Any, Dict, List\n",
"import os\n",
"from flair.data import Sentence\n",
"from flair.models import SequenceTagger"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-05T07:36:53.389033800Z",
"start_time": "2023-10-05T07:36:53.382053200Z"
}
},
"id": "f411919d7d047065"
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2023-10-05 10:36:58,072 SequenceTagger predicts: Dictionary with 20 tags: <unk>, O, S-ORG, S-MISC, B-PER, E-PER, S-PER, S-LOC, B-MISC, E-MISC, B-ORG, E-ORG, I-ORG, I-PER, B-LOC, I-LOC, E-LOC, I-MISC, <START>, <STOP>\n"
]
}
],
"source": [
"tagger = SequenceTagger.load('pytorch_model.bin')"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-05T07:36:59.846440300Z",
"start_time": "2023-10-05T07:36:54.140093700Z"
}
},
"id": "8f497b3807de2e1"
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [
{
"data": {
"text/plain": "'0.12.2'"
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import flair\n",
"flair.__version__"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"end_time": "2023-10-05T07:36:37.788428800Z",
"start_time": "2023-10-05T07:36:37.754490Z"
}
},
"id": "df243c485fd370b"
}
],
"metadata": {
"kernelspec": {
"name": "torch",
"language": "python",
"display_name": "torch"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|