Upload 4 files
Browse files- Customer churing.ipynb +0 -0
- WA_Fn-UseC_-Telco-Customer-Churn.csv +0 -0
- app.py +69 -0
- random_forest_model.pkl +3 -0
Customer churing.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
WA_Fn-UseC_-Telco-Customer-Churn.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Initialize the Flask app
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# Load the trained model
|
9 |
+
model = joblib.load('random_forest_model.pkl')
|
10 |
+
|
11 |
+
@app.route('/')
|
12 |
+
def home():
|
13 |
+
return "Welcome to the Customer Churn Prediction API!"
|
14 |
+
|
15 |
+
# Define the prediction endpoint
|
16 |
+
@app.route('/predict', methods=['POST'])
|
17 |
+
def predict():
|
18 |
+
try:
|
19 |
+
# Get the JSON data from the request
|
20 |
+
data = request.get_json()
|
21 |
+
|
22 |
+
# Extract features from the input JSON
|
23 |
+
features = [
|
24 |
+
data.get("gender"),
|
25 |
+
data.get("SeniorCitizen"),
|
26 |
+
data.get("Partner"),
|
27 |
+
data.get("Dependents"),
|
28 |
+
data.get("tenure"),
|
29 |
+
data.get("PhoneService"),
|
30 |
+
data.get("MultipleLines"),
|
31 |
+
data.get("InternetService"),
|
32 |
+
data.get("OnlineSecurity"),
|
33 |
+
data.get("OnlineBackup"),
|
34 |
+
data.get("DeviceProtection"),
|
35 |
+
data.get("TechSupport"),
|
36 |
+
data.get("StreamingTV"),
|
37 |
+
data.get("StreamingMovies"),
|
38 |
+
data.get("Contract"),
|
39 |
+
data.get("PaperlessBilling"),
|
40 |
+
data.get("PaymentMethod"),
|
41 |
+
data.get("MonthlyCharges"),
|
42 |
+
data.get("TotalCharges")
|
43 |
+
]
|
44 |
+
|
45 |
+
# Convert the features to a NumPy array for the model
|
46 |
+
features_array = np.array([features])
|
47 |
+
|
48 |
+
# Perform prediction
|
49 |
+
prediction = model.predict(features_array)
|
50 |
+
prediction_probability = model.predict_proba(features_array)
|
51 |
+
|
52 |
+
# Map prediction result to a human-readable label
|
53 |
+
churn_label = "Yes" if prediction[0] == 1 else "No"
|
54 |
+
response = {
|
55 |
+
"prediction": churn_label,
|
56 |
+
"probability": {
|
57 |
+
"No": prediction_probability[0][0],
|
58 |
+
"Yes": prediction_probability[0][1]
|
59 |
+
}
|
60 |
+
}
|
61 |
+
|
62 |
+
return jsonify(response)
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
return jsonify({"error": str(e)})
|
66 |
+
|
67 |
+
# Run the app
|
68 |
+
if __name__ == '__main__':
|
69 |
+
app.run(debug=True)
|
random_forest_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06f3641f78b28056a53da6018b310d32a6dc12a70a1390ceab9d3207ddbf8fe2
|
3 |
+
size 15056825
|