File size: 16,560 Bytes
d72b2c3 0572d9a d2ffdd6 0572d9a d72b2c3 d2ffdd6 d72b2c3 1fc3525 d72b2c3 d2ffdd6 4b59bb9 4377106 4b59bb9 4377106 4b59bb9 d2ffdd6 d72b2c3 d2ffdd6 d72b2c3 d2ffdd6 d72b2c3 966f861 d72b2c3 0572d9a d72b2c3 0572d9a 966f861 0572d9a 966f861 d72b2c3 966f861 d72b2c3 0572d9a d72b2c3 0572d9a d72b2c3 0572d9a d72b2c3 0572d9a d72b2c3 0572d9a d72b2c3 966f861 0572d9a d72b2c3 966f861 0572d9a 966f861 ceb19de d72b2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import audresample
import text_utils
import msinference
import re
import srt
import subprocess
import cv2
import markdown
import json
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from moviepy.editor import *
from audiocraft.audiogen import AudioGen, audio_write
CACHE_DIR = 'flask_cache/'
SOUNDSCAPE_DURATION = 6
sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
sound_generator.set_generation_params(duration=SOUNDSCAPE_DURATION)
print(f'{sound_generator.sample_rate=}')
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)
# SSH AGENT
# eval $(ssh-agent -s)
# ssh-add ~/.ssh/id_ed25519_github2024
#
# git remote set-url origin [email protected]:audeering/shift
# ==
def _shift(x):
n = x.shape[0]
i = np.random.randint(.24 * n, max(1, .74 * n)) # high should be above >= 0
x = np.roll(x, i)
# we can add the one or fade it and then amplify
# the audio is so short 6s that is difficult to not hear the shift somewhere
# Just concatenate - raw - and then shift - the longconcat audio - many times may fix it
# fade_in = 1 - .5 * np.tanh(-4*(np.linspace(-10, 10, n) - 9.4)) + .5 * np.tanh(4*(np.linspace(-10, 10, n) + 9.4))
return x #* fade_in # silence this
def overlay(x, scene=None):
if scene is not None:
# generate 4
print('Generating AudioCraft')
back = [sound_generator.generate(
[scene]
)[0].detach().cpu().numpy()[0, :] for _ in range(1)]
print([j.shape for j in back], len(back), 'BACK')
# upsample to 24kHZ of StyleTTS
print('Resampling')
back = [audresample.resample(i,
original_rate=sound_generator.sample_rate, # 16000
target_rate=24000
)[0, :] for i in back]
print('Cloning backgrounds')
# clone/elongate by 4x
back = [(_shift(np.concatenate([_shift(single_gen)] * 4))) for single_gen in back]
# long ~30s
back = np.concatenate(back)
for _ in range(4):
back = _shift(back)
# clone to exact len of TTS
n_repeat = len(x) // back.shape[0] + 2
# Additional Repeat - Reach full length of TTS
print(f'Additional Repeat {n_repeat=}')
back = np.concatenate(n_repeat * [back])
back = _shift(back)
print(f'\n====SOUND BACKGROUND SHAPE\n{back.shape=}',
f'{np.abs(back.max())=}\n{x.shape=}')
x = .9 * x + .1 * back[:len(x)]
else:
print('sound_background = None')
return x
def tts_multi_sentence(precomputed_style_vector=None,
text=None,
voice=None,
scene=None):
'''create 24kHZ np.array with tts
precomputed_style_vector : required if en_US or en_UK in voice, so
to perform affective TTS.
text : string
voice : string or None (falls to styleTTS)
scene : 'A castle in far away lands' -> if passed will generate background sound scene
'''
# StyleTTS2
if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
x = []
for _sentence in text:
x.append(msinference.inference(_sentence,
precomputed_style_vector,
alpha=0.3,
beta=0.7,
diffusion_steps=7,
embedding_scale=1))
x = np.concatenate(x)
return overlay(x, scene=scene)
# Fallback - Mimic-3
text_utils.store_ssml(text=text, voice=voice) # Text has to be list of single sentences
ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
ps.wait()
x, fs = soundfile.read('_tmp.wav')
x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :] # reshapes (64,) -> (1,64)
return overlay(x, sound_background)
# voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
app = Flask(__name__)
cors = CORS(app)
@app.route("/")
def index():
with open('README.md', 'r') as f:
return markdown.markdown(f.read())
@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
# https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
# object-into-a-representation-suitable-for-mongodb
r = request.form.to_dict(flat=False)
# Physically Save Client Files
for filename, obj in request.files.items():
obj.save(f'{CACHE_DIR}{filename.replace("/","")}')
print('Saved all files on Server Side\n\n')
args = SimpleNamespace(text=None if r.get('text') is None else CACHE_DIR + r.get('text')[0].replace("/",""),
video=None if r.get('video') is None else CACHE_DIR + r.get('video')[0].replace("/",""),
image=None if r.get('image') is None else CACHE_DIR + r.get('image')[0].replace("/",""),
voice=r.get('voice')[0],
native=None if r.get('native') is None else CACHE_DIR + r.get('native')[0].replace("/",""),
affective = r.get('affective')[0],
scene=r.get('scene')[0]
)
# print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
print(args, 'ENTER Script')
do_video_dub = True if args.text.endswith('.srt') else False
SILENT_VIDEO = '_silent_video.mp4'
AUDIO_TRACK = '_audio_track.wav'
if do_video_dub:
print('==\nFound .srt : {args.txt}, thus Video should be given as well\n\n')
with open(args.text, "r") as f:
s = f.read()
text = [[j.content, j.start.total_seconds(), j.end.total_seconds()] for j in srt.parse(s)]
assert args.video is not None
native_audio_file = '_tmp.wav'
subprocess.call(
["ffmpeg",
"-y", # https://stackoverflow.com/questions/39788972/ffmpeg-overwrite-output-file-if-exists
"-i",
args.video,
"-f",
"mp3",
"-ar",
"24000", # "22050 for mimic3",
"-vn",
native_audio_file])
x_native, _ = soundfile.read(native_audio_file) # reads mp3
x_native = x_native[:, 0] # stereo
# ffmpeg -i Sandra\ Kotevska\,\ Painting\ Rose\ bush\,\ mixed\ media\,\ 2017.\ \[NMzC_036MtE\].mkv -f mp3 -ar 22050 -vn out44.wa
else:
with open(args.text, 'r') as f:
t = ''.join(f)
t = re.sub(' +', ' ', t) # delete spaces
text = text_utils.split_into_sentences(t) # split to short sentences (~200 phonemes max)
# ====STYLE VECTOR====
precomputed_style_vector = None
if args.native: # Voice Cloning
try:
precomputed_style_vector = msinference.compute_style(args.native)
except soundfile.LibsndfileError: # Fallback - internal voice
print('\n Could not voice clone audio:', args.native, 'fallback to video or Internal TTS voice.\n')
if do_video_dub: # Clone voice via Video
native_audio_file = args.video.replace('.', '').replace('/', '')
native_audio_file += '__native_audio_track.wav'
soundfile.write('tgt_spk.wav',
np.concatenate([
x_native[:int(4 * 24000)]], 0).astype(np.float32), 24000) # 27400?
precomputed_style_vector = msinference.compute_style('tgt_spk.wav')
# NOTE: style vector may be None
if precomputed_style_vector is None:
if 'en_US' in args.voice or 'en_UK' in args.voice:
_dir = '/' if args.affective else '_v2/'
precomputed_style_vector = msinference.compute_style(
'assets/wavs/style_vector' + _dir + args.voice.replace(
'/', '_').replace(
'#', '_').replace(
'cmu-arctic', 'cmu_arctic').replace(
'_low', '') + '.wav')
print('\n STYLE VECTOR \n', precomputed_style_vector.shape)
# ====SILENT VIDEO====
if args.video is not None:
# banner
frame_tts = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (240, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 2
cv2.putText(frame_tts, 'TTS',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
# cv2.imshow('i', frame_tts); cv2.waitKey(); cv2.destroyAllWindows()
# ====================================== NATIVE VOICE
frame_orig = np.zeros((104, 1920, 3), dtype=np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (101, 74) # w,h
fontScale = 2
fontColor = (255, 255, 255)
thickness = 4
lineType = 1000
cv2.putText(frame_orig, 'ORIGINAL VOICE',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
thickness,
lineType)
# ====SILENT VIDEO EXTRACT====
# DONLOAD SRT from youtube
#
# yt-dlp --write-sub --sub-lang en --convert-subs "srt" https://www.youtube.com/watch?v=F1Ib7TAu7eg&list=PL4x2B6LSwFewdDvRnUTpBM7jkmpwouhPv&index=2
#
#
# .mkv ->.mp4 moviepy loads only .mp4
#
# ffmpeg -y -i Distaff\ \[qVonBgRXcWU\].mkv -c copy -c:a aac Distaff_qVonBgRXcWU.mp4
# video_file, srt_file = ['assets/Head_of_fortuna.mp4',
# 'assets/head_of_fortuna_en.srt']
#
video_file = args.video
vf = VideoFileClip(video_file)
try:
# inpaint banners if native voice
num = x_native.shape[0]
is_tts = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, num) + 9.4)) # fade heaviside
def inpaint_banner(get_frame, t):
'''blend banner - (now plays) tts or native voic
'''
im = np.copy(get_frame(t))
ix = int(t * 24000)
if is_tts[ix] > .5: # mask is 1 thus tts else native
frame = frame_tts
else:
frame = frame_orig
h, w, _ = frame.shape
# im[-h:, -w:, :] = (.4 * im[-h:, -w:, :] + .6 * frame_orig).astype(np.uint8)
offset_h = 24
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h + offset_h, :w, :]
+ .6 * frame).astype(np.uint8)
# im2 = np.concatenate([im, frame_tts], 0)
# cv2.imshow('t', im2); cv2.waitKey(); cv2.destroyAllWindows()
return im # np.concatenate([im, frane_ttts], 0)
except UnboundLocalError: # args.native == False
def inpaint_banner(get_frame, t):
im = np.copy(get_frame(t))
frame = frame_tts
h, w, _ = frame.shape
offset_h = 24
im[offset_h:h + offset_h, :w, :] = (.4 * im[offset_h:h+offset_h, :w, :]
+ .6 * frame).astype(np.uint8)
return im
vf = vf.fl(inpaint_banner)
vf.write_videofile(SILENT_VIDEO)
# ==== TTS .srt ====
if do_video_dub:
OUT_FILE = 'tmp.mp4' #args.out_file + '_video_dub.mp4'
subtitles = text
MAX_LEN = int(subtitles[-1][2] + 17) * 24000
# 17 extra seconds fail-safe for long-last-segment
print("TOTAL LEN SAMPLES ", MAX_LEN, '\n====================')
pieces = []
for k, (_text_, orig_start, orig_end) in enumerate(subtitles):
# PAUSES ?????????????????????????
pieces.append(tts_multi_sentence(text=[_text_],
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
)
total = np.concatenate(pieces, 0)
# x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
# PAD SHORTEST of TTS / NATIVE
if len(x_native) > len(total):
total = np.pad(total, (0, max(0, x_native.shape[0] - total.shape[0])))
else: # pad native to len of is_tts & total
x_native = np.pad(x_native, (0, max(0, total.shape[0] - x_native.shape[0])))
# print(total.shape, x_native.shape, 'PADDED TRACKS')
soundfile.write(AUDIO_TRACK,
# (is_tts * total + (1-is_tts) * x_native)[:, None],
(.64 * total + .27 * x_native)[:, None],
24000)
else: # Video from plain (.txt)
OUT_FILE = 'tmp.mp4'
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
soundfile.write(AUDIO_TRACK, x, 24000)
# IMAGE 2 SPEECH
if args.image is not None:
STATIC_FRAME = args.image # 'assets/image_from_T31.jpg'
OUT_FILE = 'tmp.mp4' #args.out_file + '_image_to_speech.mp4'
# SILENT CLIP
clip_silent = ImageClip(STATIC_FRAME).set_duration(5) # as long as the audio - TTS first
clip_silent.write_videofile(SILENT_VIDEO, fps=24)
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene
)
soundfile.write(AUDIO_TRACK, x, 24000)
if args.video or args.image:
# write final output video
subprocess.call(
["ffmpeg",
"-y",
"-i",
SILENT_VIDEO,
"-i",
AUDIO_TRACK,
"-c:v",
"copy",
"-map",
"0:v:0",
"-map",
" 1:a:0",
CACHE_DIR + OUT_FILE])
print(f'\noutput video is saved as {OUT_FILE}')
else:
# Fallback: No image nor video provided - do only tts
x = tts_multi_sentence(text=text,
precomputed_style_vector=precomputed_style_vector,
voice=args.voice,
scene=args.scene)
OUT_FILE = 'tmp.wav'
soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
# audios = [msinference.inference(text,
# msinference.compute_style(f'voices/{voice}.wav'),
# alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1)]
# # for t in [text]:
# output_buffer = io.BytesIO()
# write(output_buffer, 24000, np.concatenate(audios))
# response = Response(output_buffer.getvalue())
# response.headers["Content-Type"] = "audio/wav"
# https://stackoverflow.com/questions/67591467/
# flask-shows-typeerror-send-from-directory-missing-1-required-positional-argum
# send server's output as default file -> srv_result.xx
print(f'\n=SERVER saved as {OUT_FILE=}\n')
response = send_from_directory(CACHE_DIR, path=OUT_FILE)
response.headers['suffix-file-type'] = OUT_FILE
print('________________\n ? \n_______________')
return response
if __name__ == "__main__":
app.run(host="0.0.0.0")
|