File size: 6,785 Bytes
d72b2c3 0a8807e d72b2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Utility functions to load from the checkpoints.
Each checkpoint is a torch.saved dict with the following keys:
- 'xp.cfg': the hydra config as dumped during training. This should be used
to rebuild the object using the audiocraft.models.builders functions,
- 'model_best_state': a readily loadable best state for the model, including
the conditioner. The model obtained from `xp.cfg` should be compatible
with this state dict. In the case of a LM, the encodec model would not be
bundled along but instead provided separately.
Those functions also support loading from a remote location with the Torch Hub API.
They also support overriding some parameters, in particular the device and dtype
of the returned model.
"""
from pathlib import Path
from huggingface_hub import hf_hub_download
import typing as tp
import os
from omegaconf import OmegaConf, DictConfig
import torch
import audiocraft
from . import builders
from .encodec import CompressionModel
def get_audiocraft_cache_dir() -> tp.Optional[str]:
return os.environ.get('AUDIOCRAFT_CACHE_DIR', None)
def _get_state_dict(
file_or_url_or_id: tp.Union[Path, str],
filename: tp.Optional[str] = None,
device='cpu',
cache_dir: tp.Optional[str] = None,
):
if cache_dir is None:
cache_dir = get_audiocraft_cache_dir()
# Return the state dict either from a file or url
file_or_url_or_id = str(file_or_url_or_id)
assert isinstance(file_or_url_or_id, str)
if os.path.isfile(file_or_url_or_id):
return torch.load(file_or_url_or_id, map_location=device)
if os.path.isdir(file_or_url_or_id):
file = f"{file_or_url_or_id}/{filename}"
return torch.load(file, map_location=device)
elif file_or_url_or_id.startswith('https://'):
return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True)
else:
assert filename is not None, "filename needs to be defined if using HF checkpoints"
file = hf_hub_download(
repo_id=file_or_url_or_id, filename=filename, cache_dir=cache_dir,
library_name="audiocraft",
library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__)
return torch.load(file, map_location=device)
def load_compression_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir)
def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_compression_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
if 'pretrained' in pkg:
return CompressionModel.get_pretrained(pkg['pretrained'], device=device)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
model = builders.get_compression_model(cfg)
model.load_state_dict(pkg['best_state'], strict=False) # ckpt contains uninstantiated encoder
model.eval()
return model
def load_lm_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir)
def _delete_param(cfg: DictConfig, full_name: str):
parts = full_name.split('.')
for part in parts[:-1]:
if part in cfg:
cfg = cfg[part]
else:
return
OmegaConf.set_struct(cfg, False)
if parts[-1] in cfg:
del cfg[parts[-1]]
OmegaConf.set_struct(cfg, True)
def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
if cfg.device == 'cpu':
cfg.dtype = 'float32'
else:
cfg.dtype = 'float16'
_delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path')
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
_delete_param(cfg, 'conditioners.args.drop_desc_p')
model = builders.get_lm_model(cfg)
model.load_state_dict(pkg['best_state'])
model.eval()
model.cfg = cfg
return model
def load_lm_model_magnet(file_or_url_or_id: tp.Union[Path, str], compression_model_frame_rate: int,
device='cpu', cache_dir: tp.Optional[str] = None):
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir)
cfg = OmegaConf.create(pkg['xp.cfg'])
cfg.device = str(device)
if cfg.device == 'cpu':
cfg.dtype = 'float32'
else:
cfg.dtype = 'float16'
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
_delete_param(cfg, 'conditioners.args.drop_desc_p')
cfg.transformer_lm.compression_model_framerate = compression_model_frame_rate
cfg.transformer_lm.segment_duration = cfg.dataset.segment_duration
cfg.transformer_lm.span_len = cfg.masking.span_len
# MAGNeT models v1 support only xformers backend.
from .transformer import set_efficient_attention_backend
if cfg.transformer_lm.memory_efficient:
set_efficient_attention_backend("xformers")
model = builders.get_lm_model(cfg)
model.load_state_dict(pkg['best_state'])
model.eval()
model.cfg = cfg
return model
def load_mbd_ckpt(file_or_url_or_id: tp.Union[Path, str],
filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None):
return _get_state_dict(file_or_url_or_id, filename=filename, cache_dir=cache_dir)
def load_diffusion_models(file_or_url_or_id: tp.Union[Path, str],
device='cpu',
filename: tp.Optional[str] = None,
cache_dir: tp.Optional[str] = None):
pkg = load_mbd_ckpt(file_or_url_or_id, filename=filename, cache_dir=cache_dir)
models = []
processors = []
cfgs = []
sample_rate = pkg['sample_rate']
for i in range(pkg['n_bands']):
cfg = pkg[i]['cfg']
model = builders.get_diffusion_model(cfg)
model_dict = pkg[i]['model_state']
model.load_state_dict(model_dict)
model.to(device)
processor = builders.get_processor(cfg=cfg.processor, sample_rate=sample_rate)
processor_dict = pkg[i]['processor_state']
processor.load_state_dict(processor_dict)
processor.to(device)
models.append(model)
processors.append(processor)
cfgs.append(cfg)
return models, processors, cfgs
|