File size: 14,593 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import typing as tp

from einops import rearrange, repeat
import flashy
import torch
from torch import nn, einsum
import torch.nn.functional as F


def exists(val: tp.Optional[tp.Any]) -> bool:
    return val is not None


def default(val: tp.Any, d: tp.Any) -> tp.Any:
    return val if exists(val) else d


def l2norm(t):
    return F.normalize(t, p=2, dim=-1)


def ema_inplace(moving_avg, new, decay: float):
    moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))


def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
    return (x + epsilon) / (x.sum() + n_categories * epsilon)


def uniform_init(*shape: int):
    t = torch.empty(shape)
    nn.init.kaiming_uniform_(t)
    return t


def sample_vectors(samples, num: int):
    num_samples, device = samples.shape[0], samples.device

    if num_samples >= num:
        indices = torch.randperm(num_samples, device=device)[:num]
    else:
        indices = torch.randint(0, num_samples, (num,), device=device)

    return samples[indices]


def kmeans(samples, num_clusters: int, num_iters: int = 10):
    dim, dtype = samples.shape[-1], samples.dtype

    means = sample_vectors(samples, num_clusters)

    for _ in range(num_iters):
        diffs = rearrange(samples, "n d -> n () d") - rearrange(
            means, "c d -> () c d"
        )
        dists = -(diffs ** 2).sum(dim=-1)

        buckets = dists.max(dim=-1).indices
        bins = torch.bincount(buckets, minlength=num_clusters)
        zero_mask = bins == 0
        bins_min_clamped = bins.masked_fill(zero_mask, 1)

        new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
        new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
        new_means = new_means / bins_min_clamped[..., None]

        means = torch.where(zero_mask[..., None], means, new_means)

    return means, bins


def orthogonal_loss_fn(t):
    # eq (2) from https://arxiv.org/abs/2112.00384
    n = t.shape[0]
    normed_codes = l2norm(t)
    identity = torch.eye(n, device=t.device)
    cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes)
    return ((cosine_sim - identity) ** 2).sum() / (n ** 2)


class EuclideanCodebook(nn.Module):
    """Codebook with Euclidean distance.

    Args:
        dim (int): Dimension.
        codebook_size (int): Codebook size.
        kmeans_init (bool): Whether to use k-means to initialize the codebooks.
            If set to true, run the k-means algorithm on the first training batch and use
            the learned centroids as initialization.
        kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
        decay (float): Decay for exponential moving average over the codebooks.
        epsilon (float): Epsilon value for numerical stability.
        threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
            that have an exponential moving average cluster size less than the specified threshold with
            randomly selected vector from the current batch.
    """
    def __init__(
        self,
        dim: int,
        codebook_size: int,
        kmeans_init: int = False,
        kmeans_iters: int = 10,
        decay: float = 0.8,
        epsilon: float = 1e-5,
        threshold_ema_dead_code: int = 2,
    ):
        super().__init__()
        self.decay = decay
        init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
        embed = init_fn(codebook_size, dim)

        self.codebook_size = codebook_size

        self.kmeans_iters = kmeans_iters
        self.epsilon = epsilon
        self.threshold_ema_dead_code = threshold_ema_dead_code

        self.register_buffer("inited", torch.Tensor([not kmeans_init]))
        self.register_buffer("cluster_size", torch.zeros(codebook_size))
        self.register_buffer("embed", embed)
        self.register_buffer("embed_avg", embed.clone())

    @torch.jit.ignore
    def init_embed_(self, data):
        if self.inited:
            return

        embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
        self.embed.data.copy_(embed)
        self.embed_avg.data.copy_(embed.clone())
        self.cluster_size.data.copy_(cluster_size)
        self.inited.data.copy_(torch.Tensor([True]))
        # Make sure all buffers across workers are in sync after initialization
        flashy.distrib.broadcast_tensors(self.buffers())

    def replace_(self, samples, mask):
        modified_codebook = torch.where(
            mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
        )
        self.embed.data.copy_(modified_codebook)

    def expire_codes_(self, batch_samples):
        if self.threshold_ema_dead_code == 0:
            return

        expired_codes = self.cluster_size < self.threshold_ema_dead_code
        if not torch.any(expired_codes):
            return

        batch_samples = rearrange(batch_samples, "... d -> (...) d")
        self.replace_(batch_samples, mask=expired_codes)
        flashy.distrib.broadcast_tensors(self.buffers())

    def preprocess(self, x):
        x = rearrange(x, "... d -> (...) d")
        return x

    def quantize(self, x):
        embed = self.embed.t()
        dist = -(
            x.pow(2).sum(1, keepdim=True)
            - 2 * x @ embed
            + embed.pow(2).sum(0, keepdim=True)
        )
        embed_ind = dist.max(dim=-1).indices
        return embed_ind

    def postprocess_emb(self, embed_ind, shape):
        return embed_ind.view(*shape[:-1])

    def dequantize(self, embed_ind):
        quantize = F.embedding(embed_ind, self.embed)
        return quantize

    def encode(self, x):
        shape = x.shape
        # pre-process
        x = self.preprocess(x)
        # quantize
        embed_ind = self.quantize(x)
        # post-process
        embed_ind = self.postprocess_emb(embed_ind, shape)
        return embed_ind

    def decode(self, embed_ind):
        quantize = self.dequantize(embed_ind)
        return quantize

    def forward(self, x):
        shape, dtype = x.shape, x.dtype
        x = self.preprocess(x)
        self.init_embed_(x)

        embed_ind = self.quantize(x)
        embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
        embed_ind = self.postprocess_emb(embed_ind, shape)
        quantize = self.dequantize(embed_ind)

        if self.training:
            # We do the expiry of code at that point as buffers are in sync
            # and all the workers will take the same decision.
            self.expire_codes_(x)
            ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
            embed_sum = x.t() @ embed_onehot
            ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
            cluster_size = (
                laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon)
                * self.cluster_size.sum()
            )
            embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
            self.embed.data.copy_(embed_normalized)

        return quantize, embed_ind


class VectorQuantization(nn.Module):
    """Vector quantization implementation.
    Currently supports only euclidean distance.

    Args:
        dim (int): Dimension
        codebook_size (int): Codebook size
        codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
        decay (float): Decay for exponential moving average over the codebooks.
        epsilon (float): Epsilon value for numerical stability.
        kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
        kmeans_iters (int): Number of iterations used for kmeans initialization.
        threshold_ema_dead_code (int):
        channels_last (bool): Channels are the last dimension in the input tensors.
        commitment_weight (float): Weight for commitment loss.
        orthogonal_reg_weight (float): Orthogonal regularization weights.
        orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes.
        orthogonal_reg_max_codes (optional int): Maximum number of codes to consider
            for orthogonal regularization.
        threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
            that have an exponential moving average cluster size less than the specified threshold with
            randomly selected vector from the current batch.
    """
    def __init__(
        self,
        dim: int,
        codebook_size: int,
        codebook_dim: tp.Optional[int] = None,
        decay: float = 0.8,
        epsilon: float = 1e-5,
        kmeans_init: bool = False,
        kmeans_iters: int = 10,
        threshold_ema_dead_code: int = 2,
        channels_last: bool = False,
        commitment_weight: float = 1.,
        orthogonal_reg_weight: float = 0.0,
        orthogonal_reg_active_codes_only: bool = False,
        orthogonal_reg_max_codes: tp.Optional[int] = None,
    ):
        super().__init__()
        _codebook_dim: int = default(codebook_dim, dim)

        requires_projection = _codebook_dim != dim
        self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity())
        self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity())

        self.epsilon = epsilon
        self.commitment_weight = commitment_weight

        self.orthogonal_reg_weight = orthogonal_reg_weight
        self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
        self.orthogonal_reg_max_codes = orthogonal_reg_max_codes

        self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size,
                                           kmeans_init=kmeans_init, kmeans_iters=kmeans_iters,
                                           decay=decay, epsilon=epsilon,
                                           threshold_ema_dead_code=threshold_ema_dead_code)
        self.codebook_size = codebook_size

        self.channels_last = channels_last

    @property
    def codebook(self):
        return self._codebook.embed

    @property
    def inited(self):
        return self._codebook.inited

    def _preprocess(self, x):
        if not self.channels_last:
            x = rearrange(x, "b d n -> b n d")
        return x

    def _postprocess(self, quantize):
        if not self.channels_last:
            quantize = rearrange(quantize, "b n d -> b d n")
        return quantize

    def encode(self, x):
        x = self._preprocess(x)
        x = self.project_in(x)
        embed_in = self._codebook.encode(x)
        return embed_in

    def decode(self, embed_ind):
        quantize = self._codebook.decode(embed_ind)
        quantize = self.project_out(quantize)
        quantize = self._postprocess(quantize)
        return quantize

    def forward(self, x):
        device = x.device
        x = self._preprocess(x)

        x = self.project_in(x)
        quantize, embed_ind = self._codebook(x)

        if self.training:
            quantize = x + (quantize - x).detach()

        loss = torch.tensor([0.0], device=device, requires_grad=self.training)

        if self.training:
            if self.commitment_weight > 0:
                commit_loss = F.mse_loss(quantize.detach(), x)
                loss = loss + commit_loss * self.commitment_weight

            if self.orthogonal_reg_weight > 0:
                codebook = self.codebook

                if self.orthogonal_reg_active_codes_only:
                    # only calculate orthogonal loss for the activated codes for this batch
                    unique_code_ids = torch.unique(embed_ind)
                    codebook = codebook[unique_code_ids]

                num_codes = codebook.shape[0]
                if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
                    rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes]
                    codebook = codebook[rand_ids]

                orthogonal_reg_loss = orthogonal_loss_fn(codebook)
                loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight

        quantize = self.project_out(quantize)
        quantize = self._postprocess(quantize)

        return quantize, embed_ind, loss


class ResidualVectorQuantization(nn.Module):
    """Residual vector quantization implementation.

    Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
    """
    def __init__(self, *, num_quantizers, **kwargs):
        super().__init__()
        self.layers = nn.ModuleList(
            [VectorQuantization(**kwargs) for _ in range(num_quantizers)]
        )

    def forward(self, x, n_q: tp.Optional[int] = None):
        quantized_out = 0.0
        residual = x

        all_losses = []
        all_indices = []

        n_q = n_q or len(self.layers)

        for i, layer in enumerate(self.layers[:n_q]):
            quantized, indices, loss = layer(residual)
            quantized = quantized.detach()
            residual = residual - quantized
            quantized_out = quantized_out + quantized
            all_indices.append(indices)
            all_losses.append(loss)

        if self.training:
            # Solving subtle bug with STE and RVQ: https://github.com/facebookresearch/encodec/issues/25
            quantized_out = x + (quantized_out - x).detach()

        out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
        return quantized_out, out_indices, out_losses

    def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor:
        residual = x
        all_indices = []
        n_q = n_q or len(self.layers)
        for layer in self.layers[:n_q]:
            indices = layer.encode(residual)
            quantized = layer.decode(indices)
            residual = residual - quantized
            all_indices.append(indices)
        out_indices = torch.stack(all_indices)
        return out_indices

    def decode(self, q_indices: torch.Tensor) -> torch.Tensor:
        quantized_out = torch.tensor(0.0, device=q_indices.device)
        for i, indices in enumerate(q_indices):
            layer = self.layers[i]
            quantized = layer.decode(indices)
            quantized_out = quantized_out + quantized
        return quantized_out