File size: 29,302 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531e776
d72b2c3
 
 
 
 
 
06aa0fc
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531e776
 
 
d72b2c3
531e776
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531e776
 
d72b2c3
531e776
 
 
 
d72b2c3
531e776
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531e776
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import chain
import logging
import math
from pathlib import Path
import random
import re
import typing as tp
import warnings
import soundfile
import einops
from num2words import num2words
import spacy
from transformers import T5EncoderModel, T5Tokenizer  # type: ignore
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from .streaming import StreamingModule


from .streaming import StreamingModule
from .transformer import create_sin_embedding


from .quantization import ResidualVectorQuantizer
from .utils.autocast import TorchAutocast
from .utils.cache import EmbeddingCache
from .utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once


logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str]  # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor]  # condition, mask


class WavCondition(tp.NamedTuple):
    wav: torch.Tensor
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


class JointEmbedCondition(tp.NamedTuple):
    wav: torch.Tensor
    text: tp.List[tp.Optional[str]]
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


@dataclass
class ConditioningAttributes:
    text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
    wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
    joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)

    def __getitem__(self, item):
        return getattr(self, item)

    @property
    def text_attributes(self):
        return self.text.keys()

    @property
    def wav_attributes(self):
        return self.wav.keys()

    @property
    def joint_embed_attributes(self):
        return self.joint_embed.keys()

    @property
    def attributes(self):
        return {
            "text": self.text_attributes,
            "wav": self.wav_attributes,
            "joint_embed": self.joint_embed_attributes,
        }

    def to_flat_dict(self):
        return {
            **{f"text.{k}": v for k, v in self.text.items()},
            **{f"wav.{k}": v for k, v in self.wav.items()},
            **{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
        }

    @classmethod
    def from_flat_dict(cls, x):
        out = cls()
        for k, v in x.items():
            kind, att = k.split(".")
            out[kind][att] = v
        return out





def nullify_condition(condition: ConditionType, dim: int = 1):
    """Transform an input condition to a null condition.
    The way it is done by converting it to a single zero vector similarly
    to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.

    Args:
        condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
        dim (int): The dimension that will be truncated (should be the time dimension)
        WARNING!: dim should not be the batch dimension!
    Returns:
        ConditionType: A tuple of null condition and mask
    """
    assert dim != 0, "dim cannot be the batch dimension!"
    assert isinstance(condition, tuple) and \
        isinstance(condition[0], torch.Tensor) and \
        isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
    cond, mask = condition
    B = cond.shape[0]
    last_dim = cond.dim() - 1
    out = cond.transpose(dim, last_dim)
    out = 0. * out[..., :1]
    out = out.transpose(dim, last_dim)
    mask = torch.zeros((B, 1), device=out.device).int()
    assert cond.dim() == out.dim()
    return out, mask


def nullify_wav(cond: WavCondition) -> WavCondition:
    """Transform a WavCondition to a nullified WavCondition.
    It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.

    Args:
        cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
    Returns:
        WavCondition: Nullified wav condition.
    """
    null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
    return WavCondition(
        wav=null_wav,
        length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
        sample_rate=cond.sample_rate,
        path=[None] * cond.wav.shape[0],
        seek_time=[None] * cond.wav.shape[0],
    )


def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
    """Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
    and replacing metadata by dummy attributes.

    Args:
        cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
    """
    null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
    return JointEmbedCondition(
        wav=null_wav, text=[None] * len(embed.text),
        length=torch.LongTensor([0]).to(embed.wav.device),
        sample_rate=embed.sample_rate,
        path=[None] * embed.wav.shape[0],
        seek_time=[0] * embed.wav.shape[0],
    )


class Tokenizer:
    """Base tokenizer implementation
    (in case we want to introduce more advances tokenizers in the future).
    """
    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError()


class WhiteSpaceTokenizer(Tokenizer):
    """This tokenizer should be used for natural language descriptions.
    For example:
    ["he didn't, know he's going home.", 'shorter sentence'] =>
    [[78, 62, 31,  4, 78, 25, 19, 34],
    [59, 77,  0,  0,  0,  0,  0,  0]]
    """
    PUNCTUATION = "?:!.,;"

    def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
                 lemma: bool = True, stopwords: bool = True) -> None:
        self.n_bins = n_bins
        self.pad_idx = pad_idx
        self.lemma = lemma
        self.stopwords = stopwords
        try:
            self.nlp = spacy.load(language)
        except IOError:
            spacy.cli.download(language)  # type: ignore
            self.nlp = spacy.load(language)

    @tp.no_type_check
    def __call__(self, texts: tp.List[tp.Optional[str]],
                 return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Take a list of strings and convert them to a tensor of indices.

        Args:
            texts (list[str]): List of strings.
            return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
        Returns:
            tuple[torch.Tensor, torch.Tensor]:
                - Indices of words in the LUT.
                - And a mask indicating where the padding tokens are
        """
        output, lengths = [], []
        texts = deepcopy(texts)
        for i, text in enumerate(texts):
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(torch.Tensor([self.pad_idx]))
                lengths.append(0)
                continue

            # convert numbers to words
            text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text)  # type: ignore
            # normalize text
            text = self.nlp(text)  # type: ignore
            # remove stopwords
            if self.stopwords:
                text = [w for w in text if not w.is_stop]  # type: ignore
            # remove punctuation
            text = [w for w in text if w.text not in self.PUNCTUATION]  # type: ignore
            # lemmatize if needed
            text = [getattr(t, "lemma_" if self.lemma else "text") for t in text]  # type: ignore

            texts[i] = " ".join(text)
            lengths.append(len(text))
            # convert to tensor
            tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
            output.append(tokens)

        mask = length_to_mask(torch.IntTensor(lengths)).int()
        padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
        if return_text:
            return padded_output, mask, texts  # type: ignore
        return padded_output, mask


class NoopTokenizer(Tokenizer):
    """This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
    The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
    strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
    split it to ["Jeff", "Buckley"] and return an index per word.

    For example:
    ["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
    ["Metal", "Rock", "Classical"] => [0, 223, 51]
    """
    def __init__(self, n_bins: int, pad_idx: int = 0):
        self.n_bins = n_bins
        self.pad_idx = pad_idx

    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        output, lengths = [], []
        for text in texts:
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(self.pad_idx)
                lengths.append(0)
            else:
                output.append(hash_trick(text, self.n_bins))
                lengths.append(1)

        tokens = torch.LongTensor(output).unsqueeze(1)
        mask = length_to_mask(torch.IntTensor(lengths)).int()
        return tokens, mask


class BaseConditioner(nn.Module):
    """Base model for all conditioner modules.
    We allow the output dim to be different than the hidden dim for two reasons:
    1) keep our LUTs small when the vocab is large;
    2) make all condition dims consistent.

    Args:
        dim (int): Hidden dim of the model.
        output_dim (int): Output dim of the conditioner.
    """
    def __init__(self, dim: int, output_dim: int):
        super().__init__()
        self.dim = dim
        self.output_dim = output_dim
        self.output_proj = nn.Linear(dim, output_dim)

    def tokenize(self, *args, **kwargs) -> tp.Any:
        """Should be any part of the processing that will lead to a synchronization
        point, e.g. BPE tokenization with transfer to the GPU.

        The returned value will be saved and return later when calling forward().
        """
        raise NotImplementedError()

    def forward(self, inputs: tp.Any) -> ConditionType:
        """Gets input that should be used as conditioning (e.g, genre, description or a waveform).
        Outputs a ConditionType, after the input data was embedded as a dense vector.

        Returns:
            ConditionType:
                - A tensor of size [B, T, D] where B is the batch size, T is the length of the
                  output embedding and D is the dimension of the embedding.
                - And a mask indicating where the padding tokens.
        """
        raise NotImplementedError()


class TextConditioner(BaseConditioner):
    ...





class T5Conditioner(TextConditioner):
    """T5-based TextConditioner.

    Args:
        name (str): Name of the T5 model.
        output_dim (int): Output dim of the conditioner.
        finetune (bool): Whether to fine-tune T5 at train time.
        device (str): Device for T5 Conditioner.
        autocast_dtype (tp.Optional[str], optional): Autocast dtype.
        word_dropout (float, optional): Word dropout probability.
        normalize_text (bool, optional): Whether to apply text normalization.
    """
    MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
              "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
              "google/flan-t5-xl", "google/flan-t5-xxl"]
    MODELS_DIMS = {
        "t5-small": 512,
        "t5-base": 768,
        "t5-large": 1024,
        "t5-3b": 1024,
        "t5-11b": 1024,
        "google/flan-t5-small": 512,
        "google/flan-t5-base": 768,
        "google/flan-t5-large": 1024,
        "google/flan-t5-3b": 1024,
        "google/flan-t5-11b": 1024,
    }

    def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
                 autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
                 normalize_text: bool = False):
        assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
        super().__init__(self.MODELS_DIMS[name], output_dim)
        self.device = device
        self.name = name
        self.finetune = finetune
        self.word_dropout = word_dropout
        if autocast_dtype is None or self.device == 'cpu':
            self.autocast = TorchAutocast(enabled=False)
            if self.device != 'cpu':
                logger.warning("T5 has no autocast, this might lead to NaN")
        else:
            dtype = getattr(torch, autocast_dtype)
            assert isinstance(dtype, torch.dtype)
            logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
            self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
        # Let's disable logging temporarily because T5 will vomit some errors otherwise.
        # thanks https://gist.github.com/simon-weber/7853144
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
                t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
            finally:
                logging.disable(previous_level)
        if finetune:
            self.t5 = t5
        else:
            # this makes sure that the t5 models is not part
            # of the saved checkpoint
            self.__dict__['t5'] = t5.to(device)

        self.normalize_text = normalize_text
        if normalize_text:
            self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)

    def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
        # if current sample doesn't have a certain attribute, replace with empty string
        entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
        if self.normalize_text:
            _, _, entries = self.text_normalizer(entries, return_text=True)
        if self.word_dropout > 0. and self.training:
            new_entries = []
            for entry in entries:
                words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
                new_entries.append(" ".join(words))
            entries = new_entries

        empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])

        inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
        mask = inputs['attention_mask']
        mask[empty_idx, :] = 0  # zero-out index where the input is non-existant
        return inputs

    def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
        mask = inputs['attention_mask']
        with torch.set_grad_enabled(self.finetune), self.autocast:
            embeds = self.t5(**inputs).last_hidden_state
        embeds = self.output_proj(embeds.to(self.output_proj.weight))
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask





def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
    """Utility function for nullifying an attribute inside an ConditioningAttributes object.
    If the condition is of type "wav", then nullify it using `nullify_condition` function.
    If the condition is of any other type, set its value to None.
    Works in-place.
    """
    if condition_type not in ['text', 'wav', 'joint_embed']:
        raise ValueError(
            "dropout_condition got an unexpected condition type!"
            f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
        )

    if condition not in getattr(sample, condition_type):
        raise ValueError(
            "dropout_condition received an unexpected condition!"
            f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
            f" but got '{condition}' of type '{condition_type}'!"
        )

    if condition_type == 'wav':
        wav_cond = sample.wav[condition]
        sample.wav[condition] = nullify_wav(wav_cond)
    elif condition_type == 'joint_embed':
        embed = sample.joint_embed[condition]
        sample.joint_embed[condition] = nullify_joint_embed(embed)
    else:
        sample.text[condition] = None

    return sample


class DropoutModule(nn.Module):
    """Base module for all dropout modules."""
    def __init__(self, seed: int = 1234):
        super().__init__()
        self.rng = torch.Generator()
        self.rng.manual_seed(seed)


class AttributeDropout(DropoutModule):
    """Dropout with a given probability per attribute.
    This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
    to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
    This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
    must also be dropped.

    Args:
        p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
            ...
            "genre": 0.1,
            "artist": 0.5,
            "wav": 0.25,
            ...
        active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
        seed (int, optional): Random seed.
    """
    def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
        super().__init__(seed=seed)
        self.active_on_eval = active_on_eval
        # construct dict that return the values from p otherwise 0
        self.p = {}
        for condition_type, probs in p.items():
            self.p[condition_type] = defaultdict(lambda: 0, probs)

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
        """
        if not self.training and not self.active_on_eval:
            return samples

        samples = deepcopy(samples)
        for condition_type, ps in self.p.items():  # for condition types [text, wav]
            for condition, p in ps.items():  # for attributes of each type (e.g., [artist, genre])
                if torch.rand(1, generator=self.rng).item() < p:
                    for sample in samples:
                        dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"AttributeDropout({dict(self.p)})"


class ClassifierFreeGuidanceDropout(DropoutModule):
    """Classifier Free Guidance dropout.
    All attributes are dropped with the same probability.

    Args:
        p (float): Probability to apply condition dropout during training.
        seed (int): Random seed.
    """
    def __init__(self, p: float, seed: int = 1234):
        super().__init__(seed=seed)
        self.p = p

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after all attributes were set to None.
        """
        if not self.training:
            return samples

        # decide on which attributes to drop in a batched fashion
        drop = torch.rand(1, generator=self.rng).item() < self.p
        if not drop:
            return samples

        # nullify conditions of all attributes
        samples = deepcopy(samples)
        for condition_type in ["wav", "text"]:
            for sample in samples:
                for condition in sample.attributes[condition_type]:
                    dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"ClassifierFreeGuidanceDropout(p={self.p})"


class ConditioningProvider(nn.Module):
    """Prepare and provide conditions given all the supported conditioners.

    Args:
        conditioners (dict): Dictionary of conditioners.
        device (torch.device or str, optional): Device for conditioners and output condition types.
    """
    def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
        super().__init__()
        self.device = device
        self.conditioners = nn.ModuleDict(conditioners)

    # @property
    # def joint_embed_conditions(self):
    #     return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]

    # @property
    # def has_joint_embed_conditions(self):
    #     return len(self.joint_embed_conditions) > 0

    @property
    def text_conditions(self):
        return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]



    def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
        """Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
        This should be called before starting any real GPU work to avoid synchronization points.
        This will return a dict matching conditioner names to their arbitrary tokenized representations.

        Args:
            inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
                text and wav conditions.
        """
        assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
            "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
            f" but types were {set([type(x) for x in inputs])}"
        )

        output = {}
        text = self._collate_text(inputs)
        # wavs = self._collate_wavs(inputs)
        # joint_embeds = self._collate_joint_embeds(inputs)

        # assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
        #     f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
        #     f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
        # )

        for attribute, batch in text.items(): #, joint_embeds.items()):
            output[attribute] = self.conditioners[attribute].tokenize(batch)
        return output

    def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
        """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
        The output is for example:
        {
            "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
            "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
            ...
        }

        Args:
            tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
        """
        output = {}
        for attribute, inputs in tokenized.items():
            condition, mask = self.conditioners[attribute](inputs)
            output[attribute] = (condition, mask)
        return output

    def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
        """Given a list of ConditioningAttributes objects, compile a dictionary where the keys
        are the attributes and the values are the aggregated input per attribute.
        For example:
        Input:
        [
            ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
            ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
        ]
        Output:
        {
            "genre": ["Rock", "Hip-hop"],
            "description": ["A rock song with a guitar solo", "A hip-hop verse"]
        }

        Args:
            samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
        Returns:
            dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
        """
        out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
        texts = [x.text for x in samples]
        for text in texts:
            for condition in self.text_conditions:
                out[condition].append(text[condition])
        return out



    


class ConditionFuser(StreamingModule):
    """Condition fuser handles the logic to combine the different conditions
    to the actual model input.

    Args:
        fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
            each condition. For example:
            {
                "prepend": ["description"],
                "sum": ["genre", "bpm"],
                "cross": ["description"],
            }
        cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
        cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
    """
    FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]

    def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
                 cross_attention_pos_emb_scale: float = 1.0):
        super().__init__()
        assert all(
            [k in self.FUSING_METHODS for k in fuse2cond.keys()]
        ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
        self.cross_attention_pos_emb = cross_attention_pos_emb
        self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
        self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
        self.cond2fuse: tp.Dict[str, str] = {}
        for fuse_method, conditions in fuse2cond.items():
            for condition in conditions:
                self.cond2fuse[condition] = fuse_method

    def forward(
        self,
        input: torch.Tensor,
        conditions: tp.Dict[str, ConditionType]
    ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """Fuse the conditions to the provided model input.

        Args:
            input (torch.Tensor): Transformer input.
            conditions (dict[str, ConditionType]): Dict of conditions.
        Returns:
            tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
                after the conditions have been fused. The second output tensor is the tensor
                used for cross-attention or None if no cross attention inputs exist.
        """
        B, T, _ = input.shape

        if 'offsets' in self._streaming_state:
            first_step = False
            offsets = self._streaming_state['offsets']
        else:
            first_step = True
            offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)

        assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
            f"given conditions contain unknown attributes for fuser, " \
            f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
        cross_attention_output = None
        for cond_type, (cond, cond_mask) in conditions.items():
            op = self.cond2fuse[cond_type]
            if op == 'sum':
                input += cond
            elif op == 'input_interpolate':
                cond = einops.rearrange(cond, "b t d -> b d t")
                cond = F.interpolate(cond, size=input.shape[1])
                input += einops.rearrange(cond, "b d t -> b t d")
            elif op == 'prepend':
                if first_step:
                    input = torch.cat([cond, input], dim=1)
            elif op == 'cross':
                if cross_attention_output is not None:
                    cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
                else:
                    cross_attention_output = cond
            else:
                raise ValueError(f"unknown op ({op})")

        if self.cross_attention_pos_emb and cross_attention_output is not None:
            positions = torch.arange(
                cross_attention_output.shape[1],
                device=cross_attention_output.device
            ).view(1, -1, 1)
            pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
            cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb

        if self._is_streaming:
            self._streaming_state['offsets'] = offsets + T

        return input, cross_attention_output