File size: 10,611 Bytes
d72b2c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from concurrent.futures import ProcessPoolExecutor
from contextlib import contextmanager
from functools import wraps, lru_cache
import hashlib
import json
import logging
from pathlib import Path
import typing as tp
import flashy
import flashy.distrib
import omegaconf
import torch
from torch.nn.utils.rnn import pad_sequence
logger = logging.getLogger(__name__)
def model_hash(model: torch.nn.Module) -> str:
"""Return a model hash. This should allow us to track regressions in model init
from the logs of past experiments.
"""
hasher = hashlib.sha1()
for p in model.parameters():
hasher.update(p.data.cpu().numpy().tobytes())
return hasher.hexdigest()
def dict_from_config(cfg: omegaconf.DictConfig) -> dict:
"""Convenience function to map an omegaconf configuration to a dictionary.
Args:
cfg (omegaconf.DictConfig): Original configuration to map to dict.
Returns:
dict: Config as dictionary object.
"""
dct = omegaconf.OmegaConf.to_container(cfg, resolve=True)
assert isinstance(dct, dict)
return dct
def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset:
if max_samples >= len(dataset):
return dataset
generator = torch.Generator().manual_seed(seed)
perm = torch.randperm(len(dataset), generator=generator)
return torch.utils.data.Subset(dataset, perm[:max_samples].tolist())
def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int,
num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader:
"""Convenience function to load dataset into a dataloader with optional subset sampling.
Args:
dataset: Dataset to load.
num_samples (Optional[int]): Number of samples to limit subset size.
batch_size (int): Batch size.
num_workers (int): Number of workers for data loading.
seed (int): Random seed.
"""
if num_samples is not None:
dataset = random_subset(dataset, num_samples, seed)
dataloader = flashy.distrib.loader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
**kwargs
)
return dataloader
def get_dataset_from_loader(dataloader):
dataset = dataloader.dataset
if isinstance(dataset, torch.utils.data.Subset):
return dataset.dataset
else:
return dataset
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
Args:
input (torch.Tensor): The input tensor containing probabilities.
num_samples (int): Number of samples to draw.
replacement (bool): Whether to draw with replacement or not.
Keywords args:
generator (torch.Generator): A pseudorandom number generator for sampling.
Returns:
torch.Tensor: Last dimension contains num_samples indices
sampled from the multinomial probability distribution
located in the last dimension of tensor input.
"""
input_ = input.reshape(-1, input.shape[-1])
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
output = output_.reshape(*list(input.shape[:-1]), -1)
return output
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
"""Sample next token from top K values along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
k (int): The k in “top-k”.
Returns:
torch.Tensor: Sampled tokens.
"""
top_k_value, _ = torch.topk(probs, k, dim=-1)
min_value_top_k = top_k_value[..., [-1]]
probs *= (probs >= min_value_top_k).float()
probs.div_(probs.sum(dim=-1, keepdim=True))
next_token = multinomial(probs, num_samples=1)
return next_token
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
Args:
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
p (int): The p in “top-p”.
Returns:
torch.Tensor: Sampled tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort *= (~mask).float()
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
class DummyPoolExecutor:
"""Dummy pool executor to use when we actually have only 1 worker.
(e.g. instead of ProcessPoolExecutor).
"""
class DummyResult:
def __init__(self, func, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
def result(self):
return self.func(*self.args, **self.kwargs)
def __init__(self, workers, mp_context=None):
pass
def submit(self, func, *args, **kwargs):
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
return
def get_pool_executor(num_workers: int, mp_context=None):
return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1)
def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor:
"""Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences).
For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]]
Args:
lengths (torch.Tensor): tensor with lengths
max_len (int): can set the max length manually. Defaults to None.
Returns:
torch.Tensor: mask with 0s where there is pad tokens else 1s
"""
assert len(lengths.shape) == 1, "Length shape should be 1 dimensional."
final_length = lengths.max().item() if not max_len else max_len
final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor
return torch.arange(final_length, device=lengths.device)[None, :] < lengths[:, None]
def hash_trick(word: str, vocab_size: int) -> int:
"""Hash trick to pair each word with an index
Args:
word (str): word we wish to convert to an index
vocab_size (int): size of the vocabulary
Returns:
int: index of the word in the embedding LUT
"""
hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16)
return hash % vocab_size
def with_rank_rng(base_seed: int = 1234):
"""Decorator for a function so that the function will use a Random Number Generator
whose state depend on the GPU rank. The original RNG state is restored upon returning.
Args:
base_seed (int): Random seed.
"""
def _decorator(fun: tp.Callable):
@wraps(fun)
def _decorated(*args, **kwargs):
state = torch.get_rng_state()
seed = base_seed ^ flashy.distrib.rank()
torch.manual_seed(seed)
logger.debug('Rank dependent seed set to %d', seed)
try:
return fun(*args, **kwargs)
finally:
torch.set_rng_state(state)
logger.debug('RNG state restored.')
return _decorated
return _decorator
def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]:
"""Get a list of tensors and collate them to a single tensor. according to the following logic:
- `dim` specifies the time dimension which will be stacked and padded.
- The output will contain 1 new dimension (dimension index 0) which will be the size of
of the original list.
Args:
tensors (tp.List[torch.Tensor]): List of tensors to collate.
dim (int): Dimension which will be stacked and padded.
Returns:
tp.Tuple[torch.Tensor, torch.Tensor]:
torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension
(dimension index 0) which will be the size of the original list.
torch.Tensor: Tensor containing length of original tensor sizes (without padding).
"""
tensors = [x.transpose(0, dim) for x in tensors]
lens = torch.LongTensor([len(x) for x in tensors])
padded_tensors = pad_sequence(tensors)
padded_tensors = padded_tensors.transpose(0, 1)
padded_tensors = padded_tensors.transpose(1, dim + 1)
return padded_tensors, lens
# TODO: Move to flashy?
def copy_state(state: tp.Any, device: tp.Union[torch.device, str] = 'cpu',
dtype: tp.Optional[torch.dtype] = None) -> tp.Any:
if isinstance(state, torch.Tensor):
if dtype is None or not state.is_floating_point():
dtype = state.dtype
return state.detach().to(device=device, dtype=dtype, copy=True)
elif isinstance(state, dict):
return {k: copy_state(v, device, dtype) for k, v in state.items()}
elif isinstance(state, list):
return [copy_state(v, device, dtype) for v in state]
# TODO: Move to flashy?
@contextmanager
def swap_state(model, state, **kwargs):
old_state = copy_state(model.state_dict())
model.load_state_dict(state, **kwargs)
try:
yield
finally:
model.load_state_dict(old_state)
@lru_cache(None)
def warn_once(logger, msg):
"""Warn about a given message only once."""
logger.warning(msg)
def is_jsonable(x: tp.Any):
"""Check if an object can be serialized into a json:"""
try:
json.dumps(x)
return True
except (TypeError, OverflowError):
return False
def load_clap_state_dict(clap_model, path: tp.Union[str, Path]):
"""Wrapper around state dict loading of CLAP model
addressing compatibility issues between CLAP and AudioCraft
HuggingFace transformer version.
See: https://github.com/LAION-AI/CLAP/issues/118
"""
from clap_module.factory import load_state_dict # type: ignore
pkg = load_state_dict(path)
pkg.pop('text_branch.embeddings.position_ids', None)
clap_model.model.load_state_dict(pkg)
|