File size: 81,928 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
# ========================= From conditioners.py
import soundfile
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import chain
import logging
import math
from pathlib import Path
import random
import re
import typing as tp
import warnings
import einops
from num2words import num2words
import spacy
from transformers import RobertaTokenizer, T5EncoderModel, T5Tokenizer  # type: ignore
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from audiocraft.streaming import StreamingModule
from audiocraft.transformer import create_sin_embedding
from audiocraft.utils.audio_utils import convert_audio
from audiocraft.utils.autocast import TorchAutocast
from audiocraft.utils.cache import EmbeddingCache
from audiocraft.utils.utils import collate, hash_trick, length_to_mask, load_clap_state_dict, warn_once
from audiocraft.transformer import StreamingTransformer, create_norm_fn
from dataclasses import dataclass
from functools import partial
import logging
import math
import typing as tp


from torch import nn

from audiocraft.utils import utils
from audiocraft.codebooks_patterns import CodebooksPatternProvider
from audiocraft.activations import get_activation_fn





logger = logging.getLogger(__name__)
TextCondition = tp.Optional[str]  # a text condition can be a string or None (if doesn't exist)
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor]  # condition, mask


class WavCondition(tp.NamedTuple):
    wav: torch.Tensor
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


class JointEmbedCondition(tp.NamedTuple):
    wav: torch.Tensor
    text: tp.List[tp.Optional[str]]
    length: torch.Tensor
    sample_rate: tp.List[int]
    path: tp.List[tp.Optional[str]] = []
    seek_time: tp.List[tp.Optional[float]] = []


@dataclass
class ConditioningAttributes:
    text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict)
    wav: tp.Dict[str, WavCondition] = field(default_factory=dict)
    joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)

    def __getitem__(self, item):
        return getattr(self, item)

    @property
    def text_attributes(self):
        return self.text.keys()

    @property
    def wav_attributes(self):
        return self.wav.keys()

    @property
    def joint_embed_attributes(self):
        return self.joint_embed.keys()

    @property
    def attributes(self):
        return {
            "text": self.text_attributes,
            "wav": self.wav_attributes,
            "joint_embed": self.joint_embed_attributes,
        }

    def to_flat_dict(self):
        return {
            **{f"text.{k}": v for k, v in self.text.items()},
            **{f"wav.{k}": v for k, v in self.wav.items()},
            **{f"joint_embed.{k}": v for k, v in self.joint_embed.items()}
        }

    @classmethod
    def from_flat_dict(cls, x):
        out = cls()
        for k, v in x.items():
            kind, att = k.split(".")
            out[kind][att] = v
        return out





def nullify_condition(condition: ConditionType, dim: int = 1):
    """Transform an input condition to a null condition.
    The way it is done by converting it to a single zero vector similarly
    to how it is done inside WhiteSpaceTokenizer and NoopTokenizer.

    Args:
        condition (ConditionType): A tuple of condition and mask (tuple[torch.Tensor, torch.Tensor])
        dim (int): The dimension that will be truncated (should be the time dimension)
        WARNING!: dim should not be the batch dimension!
    Returns:
        ConditionType: A tuple of null condition and mask
    """
    assert dim != 0, "dim cannot be the batch dimension!"
    assert isinstance(condition, tuple) and \
        isinstance(condition[0], torch.Tensor) and \
        isinstance(condition[1], torch.Tensor), "'nullify_condition' got an unexpected input type!"
    cond, mask = condition
    B = cond.shape[0]
    last_dim = cond.dim() - 1
    out = cond.transpose(dim, last_dim)
    out = 0. * out[..., :1]
    out = out.transpose(dim, last_dim)
    mask = torch.zeros((B, 1), device=out.device).int()
    assert cond.dim() == out.dim()
    return out, mask


def nullify_wav(cond: WavCondition) -> WavCondition:
    """Transform a WavCondition to a nullified WavCondition.
    It replaces the wav by a null tensor, forces its length to 0, and replaces metadata by dummy attributes.

    Args:
        cond (WavCondition): Wav condition with wav, tensor of shape [B, T].
    Returns:
        WavCondition: Nullified wav condition.
    """
    null_wav, _ = nullify_condition((cond.wav, torch.zeros_like(cond.wav)), dim=cond.wav.dim() - 1)
    return WavCondition(
        wav=null_wav,
        length=torch.tensor([0] * cond.wav.shape[0], device=cond.wav.device),
        sample_rate=cond.sample_rate,
        path=[None] * cond.wav.shape[0],
        seek_time=[None] * cond.wav.shape[0],
    )


def nullify_joint_embed(embed: JointEmbedCondition) -> JointEmbedCondition:
    """Nullify the joint embedding condition by replacing it by a null tensor, forcing its length to 0,
    and replacing metadata by dummy attributes.

    Args:
        cond (JointEmbedCondition): Joint embedding condition with wav and text, wav tensor of shape [B, C, T].
    """
    null_wav, _ = nullify_condition((embed.wav, torch.zeros_like(embed.wav)), dim=embed.wav.dim() - 1)
    return JointEmbedCondition(
        wav=null_wav, text=[None] * len(embed.text),
        length=torch.LongTensor([0]).to(embed.wav.device),
        sample_rate=embed.sample_rate,
        path=[None] * embed.wav.shape[0],
        seek_time=[0] * embed.wav.shape[0],
    )


class Tokenizer:
    """Base tokenizer implementation
    (in case we want to introduce more advances tokenizers in the future).
    """
    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        raise NotImplementedError()


class WhiteSpaceTokenizer(Tokenizer):
    """This tokenizer should be used for natural language descriptions.
    For example:
    ["he didn't, know he's going home.", 'shorter sentence'] =>
    [[78, 62, 31,  4, 78, 25, 19, 34],
    [59, 77,  0,  0,  0,  0,  0,  0]]
    """
    PUNCTUATION = "?:!.,;"

    def __init__(self, n_bins: int, pad_idx: int = 0, language: str = "en_core_web_sm",
                 lemma: bool = True, stopwords: bool = True) -> None:
        self.n_bins = n_bins
        self.pad_idx = pad_idx
        self.lemma = lemma
        self.stopwords = stopwords
        try:
            self.nlp = spacy.load(language)
        except IOError:
            spacy.cli.download(language)  # type: ignore
            self.nlp = spacy.load(language)

    @tp.no_type_check
    def __call__(self, texts: tp.List[tp.Optional[str]],
                 return_text: bool = False) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Take a list of strings and convert them to a tensor of indices.

        Args:
            texts (list[str]): List of strings.
            return_text (bool, optional): Whether to return text as additional tuple item. Defaults to False.
        Returns:
            tuple[torch.Tensor, torch.Tensor]:
                - Indices of words in the LUT.
                - And a mask indicating where the padding tokens are
        """
        output, lengths = [], []
        texts = deepcopy(texts)
        for i, text in enumerate(texts):
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(torch.Tensor([self.pad_idx]))
                lengths.append(0)
                continue

            # convert numbers to words
            text = re.sub(r"(\d+)", lambda x: num2words(int(x.group(0))), text)  # type: ignore
            # normalize text
            text = self.nlp(text)  # type: ignore
            # remove stopwords
            if self.stopwords:
                text = [w for w in text if not w.is_stop]  # type: ignore
            # remove punctuation
            text = [w for w in text if w.text not in self.PUNCTUATION]  # type: ignore
            # lemmatize if needed
            text = [getattr(t, "lemma_" if self.lemma else "text") for t in text]  # type: ignore

            texts[i] = " ".join(text)
            lengths.append(len(text))
            # convert to tensor
            tokens = torch.Tensor([hash_trick(w, self.n_bins) for w in text])
            output.append(tokens)

        mask = length_to_mask(torch.IntTensor(lengths)).int()
        padded_output = pad_sequence(output, padding_value=self.pad_idx).int().t()
        if return_text:
            return padded_output, mask, texts  # type: ignore
        return padded_output, mask


class NoopTokenizer(Tokenizer):
    """This tokenizer should be used for global conditioners such as: artist, genre, key, etc.
    The difference between this and WhiteSpaceTokenizer is that NoopTokenizer does not split
    strings, so "Jeff Buckley" will get it's own index. Whereas WhiteSpaceTokenizer will
    split it to ["Jeff", "Buckley"] and return an index per word.

    For example:
    ["Queen", "ABBA", "Jeff Buckley"] => [43, 55, 101]
    ["Metal", "Rock", "Classical"] => [0, 223, 51]
    """
    def __init__(self, n_bins: int, pad_idx: int = 0):
        self.n_bins = n_bins
        self.pad_idx = pad_idx

    def __call__(self, texts: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        output, lengths = [], []
        for text in texts:
            # if current sample doesn't have a certain attribute, replace with pad token
            if text is None:
                output.append(self.pad_idx)
                lengths.append(0)
            else:
                output.append(hash_trick(text, self.n_bins))
                lengths.append(1)

        tokens = torch.LongTensor(output).unsqueeze(1)
        mask = length_to_mask(torch.IntTensor(lengths)).int()
        return tokens, mask


class BaseConditioner(nn.Module):
    """Base model for all conditioner modules.
    We allow the output dim to be different than the hidden dim for two reasons:
    1) keep our LUTs small when the vocab is large;
    2) make all condition dims consistent.

    Args:
        dim (int): Hidden dim of the model.
        output_dim (int): Output dim of the conditioner.
    """
    def __init__(self, dim: int, output_dim: int):
        super().__init__()
        self.dim = dim
        self.output_dim = output_dim
        self.output_proj = nn.Linear(dim, output_dim)

    def tokenize(self, *args, **kwargs) -> tp.Any:
        """Should be any part of the processing that will lead to a synchronization
        point, e.g. BPE tokenization with transfer to the GPU.

        The returned value will be saved and return later when calling forward().
        """
        raise NotImplementedError()

    def forward(self, inputs: tp.Any) -> ConditionType:
        """Gets input that should be used as conditioning (e.g, genre, description or a waveform).
        Outputs a ConditionType, after the input data was embedded as a dense vector.

        Returns:
            ConditionType:
                - A tensor of size [B, T, D] where B is the batch size, T is the length of the
                  output embedding and D is the dimension of the embedding.
                - And a mask indicating where the padding tokens.
        """
        raise NotImplementedError()


class TextConditioner(BaseConditioner):
    ...


class LUTConditioner(TextConditioner):
    """Lookup table TextConditioner.

    Args:
        n_bins (int): Number of bins.
        dim (int): Hidden dim of the model (text-encoder/LUT).
        output_dim (int): Output dim of the conditioner.
        tokenizer (str): Name of the tokenizer.
        pad_idx (int, optional): Index for padding token. Defaults to 0.
    """
    def __init__(self, n_bins: int, dim: int, output_dim: int, tokenizer: str, pad_idx: int = 0):
        super().__init__(dim, output_dim)
        self.embed = nn.Embedding(n_bins, dim)
        self.tokenizer: Tokenizer
        if tokenizer == 'whitespace':
            self.tokenizer = WhiteSpaceTokenizer(n_bins, pad_idx=pad_idx)
        elif tokenizer == 'noop':
            self.tokenizer = NoopTokenizer(n_bins, pad_idx=pad_idx)
        else:
            raise ValueError(f"unrecognized tokenizer `{tokenizer}`.")

    def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        device = self.embed.weight.device
        tokens, mask = self.tokenizer(x)
        tokens, mask = tokens.to(device), mask.to(device)
        return tokens, mask

    def forward(self, inputs: tp.Tuple[torch.Tensor, torch.Tensor]) -> ConditionType:
        tokens, mask = inputs
        embeds = self.embed(tokens)
        embeds = self.output_proj(embeds)
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask


class T5Conditioner(TextConditioner):
    """T5-based TextConditioner.

    Args:
        name (str): Name of the T5 model.
        output_dim (int): Output dim of the conditioner.
        finetune (bool): Whether to fine-tune T5 at train time.
        device (str): Device for T5 Conditioner.
        autocast_dtype (tp.Optional[str], optional): Autocast dtype.
        word_dropout (float, optional): Word dropout probability.
        normalize_text (bool, optional): Whether to apply text normalization.
    """
    MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
              "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
              "google/flan-t5-xl", "google/flan-t5-xxl"]
    MODELS_DIMS = {
        "t5-small": 512,
        "t5-base": 768,
        "t5-large": 1024,
        "t5-3b": 1024,
        "t5-11b": 1024,
        "google/flan-t5-small": 512,
        "google/flan-t5-base": 768,
        "google/flan-t5-large": 1024,
        "google/flan-t5-3b": 1024,
        "google/flan-t5-11b": 1024,
    }

    def __init__(self, name: str, output_dim: int, finetune: bool, device: str,
                 autocast_dtype: tp.Optional[str] = 'float32', word_dropout: float = 0.,
                 normalize_text: bool = False):
        assert name in self.MODELS, f"Unrecognized t5 model name (should in {self.MODELS})"
        super().__init__(self.MODELS_DIMS[name], output_dim)
        self.device = device
        self.name = name
        self.finetune = finetune
        self.word_dropout = word_dropout
        if autocast_dtype is None or self.device == 'cpu':
            self.autocast = TorchAutocast(enabled=False)
            if self.device != 'cpu':
                logger.warning("T5 has no autocast, this might lead to NaN")
        else:
            dtype = getattr(torch, autocast_dtype)
            assert isinstance(dtype, torch.dtype)
            logger.info(f"T5 will be evaluated with autocast as {autocast_dtype}")
            self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
        # Let's disable logging temporarily because T5 will vomit some errors otherwise.
        # thanks https://gist.github.com/simon-weber/7853144
        previous_level = logging.root.manager.disable
        logging.disable(logging.ERROR)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            try:
                self.t5_tokenizer = T5Tokenizer.from_pretrained(name)
                t5 = T5EncoderModel.from_pretrained(name).train(mode=finetune)
            finally:
                logging.disable(previous_level)
        if finetune:
            self.t5 = t5
        else:
            # this makes sure that the t5 models is not part
            # of the saved checkpoint
            self.__dict__['t5'] = t5.to(device)

        self.normalize_text = normalize_text
        if normalize_text:
            self.text_normalizer = WhiteSpaceTokenizer(1, lemma=True, stopwords=True)

    def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]:
        # if current sample doesn't have a certain attribute, replace with empty string
        entries: tp.List[str] = [xi if xi is not None else "" for xi in x]
        if self.normalize_text:
            _, _, entries = self.text_normalizer(entries, return_text=True)
        if self.word_dropout > 0. and self.training:
            new_entries = []
            for entry in entries:
                words = [word for word in entry.split(" ") if random.random() >= self.word_dropout]
                new_entries.append(" ".join(words))
            entries = new_entries

        empty_idx = torch.LongTensor([i for i, xi in enumerate(entries) if xi == ""])

        inputs = self.t5_tokenizer(entries, return_tensors='pt', padding=True).to(self.device)
        mask = inputs['attention_mask']
        mask[empty_idx, :] = 0  # zero-out index where the input is non-existant
        return inputs

    def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType:
        mask = inputs['attention_mask']
        with torch.set_grad_enabled(self.finetune), self.autocast:
            embeds = self.t5(**inputs).last_hidden_state
        embeds = self.output_proj(embeds.to(self.output_proj.weight))
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask


class WaveformConditioner(BaseConditioner):
    """Base class for all conditioners that take a waveform as input.
    Classes that inherit must implement `_get_wav_embedding` that outputs
    a continuous tensor, and `_downsampling_factor` that returns the down-sampling
    factor of the embedding model.

    Args:
        dim (int): The internal representation dimension.
        output_dim (int): Output dimension.
        device (tp.Union[torch.device, str]): Device.
    """
    def __init__(self, dim: int, output_dim: int, device: tp.Union[torch.device, str]):
        super().__init__(dim, output_dim)
        self.device = device
        # if False no masking is done, used in ChromaStemConditioner when completing by periodicity a sample.
        self._use_masking = True

    def tokenize(self, x: WavCondition) -> WavCondition:
        wav, length, sample_rate, path, seek_time = x
        assert length is not None
        return WavCondition(wav.to(self.device), length.to(self.device), sample_rate, path, seek_time)

    def _get_wav_embedding(self, x: WavCondition) -> torch.Tensor:
        """Gets as input a WavCondition and returns a dense embedding."""
        raise NotImplementedError()

    def _downsampling_factor(self):
        """Returns the downsampling factor of the embedding model."""
        raise NotImplementedError()

    def forward(self, x: WavCondition) -> ConditionType:
        """Extract condition embedding and mask from a waveform and its metadata.
        Args:
            x (WavCondition): Waveform condition containing raw waveform and metadata.
        Returns:
            ConditionType: a dense vector representing the conditioning along with its mask
        """
        wav, lengths, *_ = x
        with torch.no_grad():
            embeds = self._get_wav_embedding(x)
        embeds = embeds.to(self.output_proj.weight)
        embeds = self.output_proj(embeds)

        if lengths is not None and self._use_masking:
            lengths = lengths / self._downsampling_factor()
            mask = length_to_mask(lengths, max_len=embeds.shape[1]).int()  # type: ignore
        else:
            mask = torch.ones_like(embeds[..., 0])
        embeds = (embeds * mask.unsqueeze(-1))
        return embeds, mask





class JointEmbeddingConditioner(BaseConditioner):
    """Joint embedding conditioning supporting both audio or text conditioning.

    Args:
        dim (int): Dimension.
        output_dim (int): Output dimension.
        device (str): Device.
        attribute (str): Attribute used by the conditioner.
        autocast_dtype (str): Autocast for the conditioner.
        quantize (bool): Whether to quantize the CLAP embedding.
        n_q (int): Number of residual quantizers (used if quantize is true).
        bins (int): Quantizers' codebooks size (used if quantize is true).
        kwargs: Additional parameters for residual vector quantizer.
    """
    def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
                 autocast_dtype: tp.Optional[str] = 'float32', quantize: bool = True,
                 n_q: int = 12, bins: int = 1024, **kwargs):
        super().__init__(dim=dim, output_dim=output_dim)
        self.device = device
        self.attribute = attribute
        if autocast_dtype is None or device == 'cpu':
            self.autocast = TorchAutocast(enabled=False)
            logger.warning("JointEmbeddingConditioner has no autocast, this might lead to NaN.")
        else:
            dtype = getattr(torch, autocast_dtype)
            assert isinstance(dtype, torch.dtype)
            logger.info(f"JointEmbeddingConditioner will be evaluated with autocast as {autocast_dtype}.")
            self.autocast = TorchAutocast(enabled=True, device_type=self.device, dtype=dtype)
        # residual vector quantizer to discretize the conditioned embedding
        self.quantizer=None
        if quantize:
            print('\n\n\n\nWANTS TO QUANTIZE on Inference\n\n\n\n')
            # self.quantizer = ResidualVectorQuantizer(dim, n_q=n_q, bins=bins, **kwargs)

    def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Get joint embedding in latent space from the inputs.

        Returns:
            tuple[torch.Tensor, torch.Tensor]: Tensor for the latent embedding
                and corresponding empty indexes.
        """
        raise NotImplementedError()

    def forward(self, x: JointEmbedCondition) -> ConditionType:
        with self.autocast:
            embed, empty_idx = self._get_embed(x)
            if self.quantizer is not None:
                embed = embed.view(-1, self.dim, 1)
                q_res = self.quantizer(embed, frame_rate=1)
                out_embed = q_res.x.view(-1, self.dim)
            else:
                out_embed = embed
            out_embed = self.output_proj(out_embed).view(-1, 1, self.output_dim)
            mask = torch.ones(*out_embed.shape[:2], device=out_embed.device)
            mask[empty_idx, :] = 0  # zero-out index where the input is non-existant
            out_embed = (out_embed * mask.unsqueeze(-1))
            return out_embed, mask

    def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
        return x


class CLAPEmbeddingConditioner(JointEmbeddingConditioner):
    """Joint Embedding conditioner based on pre-trained CLAP model.

    This CLAP-based conditioner supports a caching mechanism
    over the computed embeddings for faster training.

    Args:
        dim (int): Dimension.
        output_dim (int): Output dimension.
        device (str): Device.
        attribute (str): Attribute used by the conditioner.
        quantize (bool): Whether to quantize the CLAP embedding.
        n_q (int): Number of residual quantizers (used if quantize is true).
        bins (int): Quantizers' codebooks size (used if quantize is true).
        checkpoint (str): Path to CLAP checkpoint.
        model_arch (str): CLAP model architecture.
        enable_fusion (bool): Enable fusion for CLAP model.
        sample_rate (int): Sample rate used by CLAP model.
        max_audio_length (float): Maximum audio length for CLAP model.
        audio_stride (float): Stride to use for getting a CLAP embedding on the full sequence.
        normalize (bool): Whether to normalize the CLAP embedding.
        text_p (float): Probability of using text representation instead of audio at train time.
        batch_size (Optional[int]): Batch size for CLAP embedding computation.
        autocast_dtype (str): Autocast for the conditioner.
        cache_path (Optional[str]): Path for pre-computed embeddings caching.
        kwargs: Additional parameters for residual vector quantizer.
    """
    def __init__(self, dim: int, output_dim: int, device: str, attribute: str,
                 quantize: bool, n_q: int, bins: int, checkpoint: tp.Union[str, Path], model_arch: str,
                 enable_fusion: bool, sample_rate: int, max_audio_length: int, audio_stride: int,
                 normalize: bool, text_p: bool, batch_size: tp.Optional[int] = None,
                 autocast_dtype: tp.Optional[str] = 'float32', cache_path: tp.Optional[str] = None, **kwargs):
        try:
            import laion_clap  # type: ignore
        except ImportError:
            raise ImportError("Please install CLAP to use the CLAPEmbeddingConditioner: 'pip install laion_clap'")
        warnings.warn("Sample rate for CLAP conditioner was fixed in version v1.1.0, (from 44.1 to 48 kHz). "
                      "Please retrain all models.")
        checkpoint = AudioCraftEnvironment.resolve_reference_path(checkpoint)
        clap_tokenize = RobertaTokenizer.from_pretrained('roberta-base')
        clap_model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=model_arch)
        load_clap_state_dict(clap_model, checkpoint)
        clap_model.eval()
        clap_model.to(device)
        super().__init__(dim=dim, output_dim=output_dim, device=device, attribute=attribute,
                         autocast_dtype=autocast_dtype, quantize=quantize, n_q=n_q, bins=bins,
                         **kwargs)
        self.checkpoint = checkpoint
        self.enable_fusion = enable_fusion
        self.model_arch = model_arch
        self.clap: laion_clap.CLAP_Module
        self.clap_tokenize: RobertaTokenizer
        self.clap_sample_rate = sample_rate
        self.clap_max_frames = int(self.clap_sample_rate * max_audio_length)
        self.clap_stride = int(self.clap_sample_rate * audio_stride)
        self.batch_size = batch_size or 1
        self.normalize = normalize
        self.text_p = text_p
        self.__dict__['clap_tokenize'] = clap_tokenize
        self.__dict__['clap'] = clap_model
        self.wav_cache, self.text_cache = None, None
        if cache_path is not None:
            self.wav_cache = EmbeddingCache(Path(cache_path) / 'wav', self.device,
                                            compute_embed_fn=self._get_wav_embedding_for_cache,
                                            extract_embed_fn=self._extract_wav_embedding_chunk)
            self.text_cache = EmbeddingCache(Path(cache_path) / 'text', self.device,
                                             compute_embed_fn=self._get_text_embedding_for_cache)

    def _tokenizer(self, texts: tp.Union[str, tp.List[str]]) -> dict:
        # we use the default params from CLAP module here as well
        return self.clap_tokenize(texts, padding="max_length", truncation=True, max_length=77, return_tensors="pt")

    def _compute_text_embedding(self, text: tp.List[str]) -> torch.Tensor:
        """Compute text embedding from CLAP model on a given a batch of text.

        Args:
            text (list[str]): List of text for the batch, with B items.
        Returns:
            torch.Tensor: CLAP embedding derived from text, of shape [B, 1, D], with D the CLAP embedding dimension.
        """
        with torch.no_grad():
            embed = self.clap.get_text_embedding(text, tokenizer=self._tokenizer, use_tensor=True)
            return embed.view(embed.size(0), 1, embed.size(-1))

    def _get_text_embedding_for_cache(self, path: tp.Union[Path, str],
                                      x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Get text embedding function for the cache."""
        text = x.text[idx]
        text = text if text is not None else ""
        return self._compute_text_embedding([text])[0]

    def _preprocess_wav(self, wav: torch.Tensor, length: torch.Tensor, sample_rates: tp.List[int]) -> torch.Tensor:
        """Preprocess wav to expected format by CLAP model.

        Args:
            wav (torch.Tensor): Audio wav, of shape [B, C, T].
            length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
            sample_rates (list[int]): Sample rates for each sample in the batch
        Returns:
            torch.Tensor: Audio wav of shape [B, T].
        """
        assert wav.dim() == 3, "Expecting wav to be [B, C, T]"
        if sample_rates is not None:
            _wav = []
            for i, audio in enumerate(wav):
                sr = sample_rates[i]
                audio = convert_audio(audio, from_rate=sr, to_rate=self.clap_sample_rate, to_channels=1)
                _wav.append(audio)
            wav = torch.stack(_wav, dim=0)
        wav = wav.mean(dim=1)
        return wav

    def _compute_wav_embedding(self, wav: torch.Tensor, length: torch.Tensor,
                               sample_rates: tp.List[int], reduce_mean: bool = False) -> torch.Tensor:
        """Compute audio wave embedding from CLAP model.

        Since CLAP operates on a fixed sequence length audio inputs and we need to process longer audio sequences,
        we calculate the wav embeddings on `clap_max_frames` windows with `clap_stride`-second stride and
        average the resulting embeddings.

        Args:
            wav (torch.Tensor): Audio wav, of shape [B, C, T].
            length (torch.Tensor): Actual length of the audio for each item in the batch, of shape [B].
            sample_rates (list[int]): Sample rates for each sample in the batch.
            reduce_mean (bool): Whether to get the average tensor.
        Returns:
            torch.Tensor: Audio embedding of shape [B, F, D], F being the number of chunks, D the dimension.
        """
        with torch.no_grad():
            wav = self._preprocess_wav(wav, length, sample_rates)
            B, T = wav.shape
            if T >= self.clap_max_frames:
                wav = wav.unfold(-1, self.clap_max_frames, self.clap_stride)  # [B, F, T]
            else:
                wav = wav.view(-1, 1, T)  # [B, F, T] with F=1
            wav = einops.rearrange(wav, 'b f t -> (b f) t')
            embed_list = []
            for i in range(0, wav.size(0), self.batch_size):
                _wav = wav[i:i+self.batch_size, ...]
                _embed = self.clap.get_audio_embedding_from_data(_wav, use_tensor=True)
                embed_list.append(_embed)
            embed = torch.cat(embed_list, dim=0)
            embed = einops.rearrange(embed, '(b f) d -> b f d', b=B)
            if reduce_mean:
                embed = embed.mean(dim=1, keepdim=True)
            return embed  # [B, F, D] with F=1 if reduce_mean is True

    def _get_wav_embedding_for_cache(self, path: tp.Union[str, Path],
                                     x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Compute audio wave embedding for the cache.
        The embedding is computed on a given audio read from file.

        Args:
            path (str or Path): Path to the full audio file.
        Returns:
            torch.Tensor: Single-item tensor of shape [F, D], F being the number of chunks, D the dimension.
        """
        wav, sr = soundfile.read(path)  # [C, T]
        wav = wav.unsqueeze(0).to(self.device)  # [1, C, T]
        wav_len = torch.LongTensor([wav.shape[-1]]).to(self.device)
        embed = self._compute_wav_embedding(wav, wav_len, [sr], reduce_mean=False)  # [B, F, D]
        return embed.squeeze(0)  # [F, D]

    def _extract_wav_embedding_chunk(self, full_embed: torch.Tensor, x: JointEmbedCondition, idx: int) -> torch.Tensor:
        """Extract the chunk of embedding matching the seek_time and length from the full CLAP audio embedding.

        Args:
            full_embed (torch.Tensor): CLAP embedding computed on the full wave, of shape [F, D].
            x (JointEmbedCondition): Joint embedding condition for the full batch.
            idx (int): Index considered for the given embedding to extract.
        Returns:
            torch.Tensor: Wav embedding averaged on sliding window, of shape [1, D].
        """
        sample_rate = x.sample_rate[idx]
        seek_time = x.seek_time[idx]
        seek_time = 0. if seek_time is None else seek_time
        clap_stride = int(self.clap_stride / self.clap_sample_rate) * sample_rate
        end_seek_time = seek_time + self.clap_max_frames / self.clap_sample_rate
        start_offset = int(seek_time * sample_rate // clap_stride)
        end_offset = int(end_seek_time * sample_rate // clap_stride)
        wav_embed = full_embed[start_offset:end_offset, ...]
        wav_embed = wav_embed.mean(dim=0, keepdim=True)
        return wav_embed.to(self.device)  # [F, D]

    def _get_text_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
        """Get CLAP embedding from a batch of text descriptions."""
        no_nullified_cond = x.wav.shape[-1] > 1  # we don't want to read from cache when condition dropout
        if self.text_cache is not None and no_nullified_cond:
            assert all(p is not None for p in x.path), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            embed = self.text_cache.get_embed_from_cache(paths, x)
        else:
            text = [xi if xi is not None else "" for xi in x.text]
            embed = self._compute_text_embedding(text)
        if self.normalize:
            embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
        return embed

    def _get_wav_embedding(self, x: JointEmbedCondition) -> torch.Tensor:
        """Get CLAP embedding from a batch of audio tensors (and corresponding sample rates)."""
        no_undefined_paths = all(p is not None for p in x.path)
        no_nullified_cond = x.wav.shape[-1] > 1  # we don't want to read from cache when condition dropout
        if self.wav_cache is not None and no_undefined_paths and no_nullified_cond:
            paths = [Path(p) for p in x.path if p is not None]
            embed = self.wav_cache.get_embed_from_cache(paths, x)
        else:
            embed = self._compute_wav_embedding(x.wav, x.length, x.sample_rate, reduce_mean=True)
        if self.normalize:
            embed = torch.nn.functional.normalize(embed, p=2.0, dim=-1)
        return embed

    def tokenize(self, x: JointEmbedCondition) -> JointEmbedCondition:
        # Trying to limit as much as possible sync points when the cache is warm.
        no_undefined_paths = all(p is not None for p in x.path)
        if self.wav_cache is not None and no_undefined_paths:
            assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            self.wav_cache.populate_embed_cache(paths, x)
        if self.text_cache is not None and no_undefined_paths:
            assert all([p is not None for p in x.path]), "Cache requires all JointEmbedCondition paths to be provided"
            paths = [Path(p) for p in x.path if p is not None]
            self.text_cache.populate_embed_cache(paths, x)
        return x

    def _get_embed(self, x: JointEmbedCondition) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Extract shared latent representation from either the wav or the text using CLAP."""
        # decide whether to use text embedding at train time or not
        use_text_embed = random.random() < self.text_p
        if self.training and not use_text_embed:
            embed = self._get_wav_embedding(x)
            empty_idx = torch.LongTensor([])  # we assume we always have the audio wav
        else:
            embed = self._get_text_embedding(x)
            empty_idx = torch.LongTensor([i for i, xi in enumerate(x.text) if xi is None or xi == ""])
        return embed, empty_idx


def dropout_condition(sample: ConditioningAttributes, condition_type: str, condition: str) -> ConditioningAttributes:
    """Utility function for nullifying an attribute inside an ConditioningAttributes object.
    If the condition is of type "wav", then nullify it using `nullify_condition` function.
    If the condition is of any other type, set its value to None.
    Works in-place.
    """
    if condition_type not in ['text', 'wav', 'joint_embed']:
        raise ValueError(
            "dropout_condition got an unexpected condition type!"
            f" expected 'text', 'wav' or 'joint_embed' but got '{condition_type}'"
        )

    if condition not in getattr(sample, condition_type):
        raise ValueError(
            "dropout_condition received an unexpected condition!"
            f" expected wav={sample.wav.keys()} and text={sample.text.keys()}"
            f" but got '{condition}' of type '{condition_type}'!"
        )

    if condition_type == 'wav':
        wav_cond = sample.wav[condition]
        sample.wav[condition] = nullify_wav(wav_cond)
    elif condition_type == 'joint_embed':
        embed = sample.joint_embed[condition]
        sample.joint_embed[condition] = nullify_joint_embed(embed)
    else:
        sample.text[condition] = None

    return sample


class DropoutModule(nn.Module):
    """Base module for all dropout modules."""
    def __init__(self, seed: int = 1234):
        super().__init__()
        self.rng = torch.Generator()
        self.rng.manual_seed(seed)


class AttributeDropout(DropoutModule):
    """Dropout with a given probability per attribute.
    This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes
    to be dropped out separately. For example, "artist" can be dropped while "genre" remains.
    This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre"
    must also be dropped.

    Args:
        p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example:
            ...
            "genre": 0.1,
            "artist": 0.5,
            "wav": 0.25,
            ...
        active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False.
        seed (int, optional): Random seed.
    """
    def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234):
        super().__init__(seed=seed)
        self.active_on_eval = active_on_eval
        # construct dict that return the values from p otherwise 0
        self.p = {}
        for condition_type, probs in p.items():
            self.p[condition_type] = defaultdict(lambda: 0, probs)

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after certain attributes were set to None.
        """
        if not self.training and not self.active_on_eval:
            return samples

        samples = deepcopy(samples)
        for condition_type, ps in self.p.items():  # for condition types [text, wav]
            for condition, p in ps.items():  # for attributes of each type (e.g., [artist, genre])
                if torch.rand(1, generator=self.rng).item() < p:
                    for sample in samples:
                        dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"AttributeDropout({dict(self.p)})"


class ClassifierFreeGuidanceDropout(DropoutModule):
    """Classifier Free Guidance dropout.
    All attributes are dropped with the same probability.

    Args:
        p (float): Probability to apply condition dropout during training.
        seed (int): Random seed.
    """
    def __init__(self, p: float, seed: int = 1234):
        super().__init__(seed=seed)
        self.p = p

    def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]:
        """
        Args:
            samples (list[ConditioningAttributes]): List of conditions.
        Returns:
            list[ConditioningAttributes]: List of conditions after all attributes were set to None.
        """
        if not self.training:
            return samples

        # decide on which attributes to drop in a batched fashion
        drop = torch.rand(1, generator=self.rng).item() < self.p
        if not drop:
            return samples

        # nullify conditions of all attributes
        samples = deepcopy(samples)
        for condition_type in ["wav", "text"]:
            for sample in samples:
                for condition in sample.attributes[condition_type]:
                    dropout_condition(sample, condition_type, condition)
        return samples

    def __repr__(self):
        return f"ClassifierFreeGuidanceDropout(p={self.p})"


class ConditioningProvider(nn.Module):
    """Prepare and provide conditions given all the supported conditioners.

    Args:
        conditioners (dict): Dictionary of conditioners.
        device (torch.device or str, optional): Device for conditioners and output condition types.
    """
    def __init__(self, conditioners: tp.Dict[str, BaseConditioner], device: tp.Union[torch.device, str] = "cpu"):
        super().__init__()
        self.device = device
        self.conditioners = nn.ModuleDict(conditioners)

    @property
    def joint_embed_conditions(self):
        return [m.attribute for m in self.conditioners.values() if isinstance(m, JointEmbeddingConditioner)]

    @property
    def has_joint_embed_conditions(self):
        return len(self.joint_embed_conditions) > 0

    @property
    def text_conditions(self):
        return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)]

    @property
    def wav_conditions(self):
        return [k for k, v in self.conditioners.items() if isinstance(v, WaveformConditioner)]

    @property
    def has_wav_condition(self):
        return len(self.wav_conditions) > 0

    def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]:
        """Match attributes/wavs with existing conditioners in self, and compute tokenize them accordingly.
        This should be called before starting any real GPU work to avoid synchronization points.
        This will return a dict matching conditioner names to their arbitrary tokenized representations.

        Args:
            inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing
                text and wav conditions.
        """
        assert all([isinstance(x, ConditioningAttributes) for x in inputs]), (
            "Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]",
            f" but types were {set([type(x) for x in inputs])}"
        )

        output = {}
        text = self._collate_text(inputs)
        wavs = self._collate_wavs(inputs)
        joint_embeds = self._collate_joint_embeds(inputs)

        assert set(text.keys() | wavs.keys() | joint_embeds.keys()).issubset(set(self.conditioners.keys())), (
            f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ",
            f"got {text.keys(), wavs.keys(), joint_embeds.keys()}"
        )

        for attribute, batch in chain(text.items(), wavs.items(), joint_embeds.items()):
            output[attribute] = self.conditioners[attribute].tokenize(batch)
        return output

    def forward(self, tokenized: tp.Dict[str, tp.Any]) -> tp.Dict[str, ConditionType]:
        """Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations.
        The output is for example:
        {
            "genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])),
            "description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])),
            ...
        }

        Args:
            tokenized (dict): Dict of tokenized representations as returned by `tokenize()`.
        """
        output = {}
        for attribute, inputs in tokenized.items():
            condition, mask = self.conditioners[attribute](inputs)
            output[attribute] = (condition, mask)
        return output

    def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]:
        """Given a list of ConditioningAttributes objects, compile a dictionary where the keys
        are the attributes and the values are the aggregated input per attribute.
        For example:
        Input:
        [
            ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...),
            ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, wav=...),
        ]
        Output:
        {
            "genre": ["Rock", "Hip-hop"],
            "description": ["A rock song with a guitar solo", "A hip-hop verse"]
        }

        Args:
            samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
        Returns:
            dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch.
        """
        out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list)
        texts = [x.text for x in samples]
        for text in texts:
            for condition in self.text_conditions:
                out[condition].append(text[condition])
        return out

    def _collate_wavs(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, WavCondition]:
        """Generate a dict where the keys are attributes by which we fetch similar wavs,
        and the values are Tensors of wavs according to said attributes.

        *Note*: by the time the samples reach this function, each sample should have some waveform
        inside the "wav" attribute. It should be either:
        1. A real waveform
        2. A null waveform due to the sample having no similar waveforms (nullified by the dataset)
        3. A null waveform due to it being dropped in a dropout module (nullified by dropout)

        Args:
            samples (list of ConditioningAttributes): List of ConditioningAttributes samples.
        Returns:
            dict[str, WavCondition]: A dictionary mapping an attribute name to wavs.
        """
        wavs = defaultdict(list)
        lengths = defaultdict(list)
        sample_rates = defaultdict(list)
        paths = defaultdict(list)
        seek_times = defaultdict(list)
        out: tp.Dict[str, WavCondition] = {}

        for sample in samples:
            for attribute in self.wav_conditions:
                wav, length, sample_rate, path, seek_time = sample.wav[attribute]
                assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]"
                assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1"
                # mono-channel conditioning
                wav = wav.mean(1, keepdim=True)  # [1, 1, T]
                wavs[attribute].append(wav.flatten())  # [T]
                lengths[attribute].append(length)
                sample_rates[attribute].extend(sample_rate)
                paths[attribute].extend(path)
                seek_times[attribute].extend(seek_time)

        # stack all wavs to a single tensor
        for attribute in self.wav_conditions:
            stacked_wav, _ = collate(wavs[attribute], dim=0)
            out[attribute] = WavCondition(
                stacked_wav.unsqueeze(1), torch.cat(lengths[attribute]), sample_rates[attribute],
                paths[attribute], seek_times[attribute])

        return out

    def _collate_joint_embeds(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, JointEmbedCondition]:
        """Generate a dict where the keys are attributes by which we compute joint embeddings,
        and the values are Tensors of pre-computed embeddings and the corresponding text attributes.

        Args:
            samples (list[ConditioningAttributes]): List of ConditioningAttributes samples.
        Returns:
            A dictionary mapping an attribute name to joint embeddings.
        """
        texts = defaultdict(list)
        wavs = defaultdict(list)
        lengths = defaultdict(list)
        sample_rates = defaultdict(list)
        paths = defaultdict(list)
        seek_times = defaultdict(list)
        channels: int = 0

        out = {}
        for sample in samples:
            for attribute in self.joint_embed_conditions:
                wav, text, length, sample_rate, path, seek_time = sample.joint_embed[attribute]
                assert wav.dim() == 3
                if channels == 0:
                    channels = wav.size(1)
                else:
                    assert channels == wav.size(1), "not all audio has same number of channels in batch"
                assert wav.size(0) == 1, "Expecting single-wav batch in the collate method"
                wav = einops.rearrange(wav, "b c t -> (b c t)")  # [1, C, T] => [C * T]
                wavs[attribute].append(wav)
                texts[attribute].extend(text)
                lengths[attribute].append(length)
                sample_rates[attribute].extend(sample_rate)
                paths[attribute].extend(path)
                seek_times[attribute].extend(seek_time)

        for attribute in self.joint_embed_conditions:
            stacked_texts = texts[attribute]
            stacked_paths = paths[attribute]
            stacked_seek_times = seek_times[attribute]
            stacked_wavs = pad_sequence(wavs[attribute]).to(self.device)
            stacked_wavs = einops.rearrange(stacked_wavs, "(c t) b -> b c t", c=channels)
            stacked_sample_rates = sample_rates[attribute]
            stacked_lengths = torch.cat(lengths[attribute]).to(self.device)
            assert stacked_lengths.size(0) == stacked_wavs.size(0)
            assert len(stacked_sample_rates) == stacked_wavs.size(0)
            assert len(stacked_texts) == stacked_wavs.size(0)
            out[attribute] = JointEmbedCondition(
                text=stacked_texts, wav=stacked_wavs,
                length=stacked_lengths, sample_rate=stacked_sample_rates,
                path=stacked_paths, seek_time=stacked_seek_times)

        return out


class ConditionFuser(StreamingModule):
    """Condition fuser handles the logic to combine the different conditions
    to the actual model input.

    Args:
        fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse
            each condition. For example:
            {
                "prepend": ["description"],
                "sum": ["genre", "bpm"],
                "cross": ["description"],
            }
        cross_attention_pos_emb (bool, optional): Use positional embeddings in cross attention.
        cross_attention_pos_emb_scale (int): Scale for positional embeddings in cross attention if used.
    """
    FUSING_METHODS = ["sum", "prepend", "cross", "input_interpolate"]

    def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]], cross_attention_pos_emb: bool = False,
                 cross_attention_pos_emb_scale: float = 1.0):
        super().__init__()
        assert all(
            [k in self.FUSING_METHODS for k in fuse2cond.keys()]
        ), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}"
        self.cross_attention_pos_emb = cross_attention_pos_emb
        self.cross_attention_pos_emb_scale = cross_attention_pos_emb_scale
        self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond
        self.cond2fuse: tp.Dict[str, str] = {}
        for fuse_method, conditions in fuse2cond.items():
            for condition in conditions:
                self.cond2fuse[condition] = fuse_method

    def forward(
        self,
        input: torch.Tensor,
        conditions: tp.Dict[str, ConditionType]
    ) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
        """Fuse the conditions to the provided model input.

        Args:
            input (torch.Tensor): Transformer input.
            conditions (dict[str, ConditionType]): Dict of conditions.
        Returns:
            tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input
                after the conditions have been fused. The second output tensor is the tensor
                used for cross-attention or None if no cross attention inputs exist.
        """
        B, T, _ = input.shape

        if 'offsets' in self._streaming_state:
            first_step = False
            offsets = self._streaming_state['offsets']
        else:
            first_step = True
            offsets = torch.zeros(input.shape[0], dtype=torch.long, device=input.device)

        assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \
            f"given conditions contain unknown attributes for fuser, " \
            f"expected {self.cond2fuse.keys()}, got {conditions.keys()}"
        cross_attention_output = None
        for cond_type, (cond, cond_mask) in conditions.items():
            op = self.cond2fuse[cond_type]
            if op == 'sum':
                input += cond
            elif op == 'input_interpolate':
                cond = einops.rearrange(cond, "b t d -> b d t")
                cond = F.interpolate(cond, size=input.shape[1])
                input += einops.rearrange(cond, "b d t -> b t d")
            elif op == 'prepend':
                if first_step:
                    input = torch.cat([cond, input], dim=1)
            elif op == 'cross':
                if cross_attention_output is not None:
                    cross_attention_output = torch.cat([cross_attention_output, cond], dim=1)
                else:
                    cross_attention_output = cond
            else:
                raise ValueError(f"unknown op ({op})")

        if self.cross_attention_pos_emb and cross_attention_output is not None:
            positions = torch.arange(
                cross_attention_output.shape[1],
                device=cross_attention_output.device
            ).view(1, -1, 1)
            pos_emb = create_sin_embedding(positions, cross_attention_output.shape[-1])
            cross_attention_output = cross_attention_output + self.cross_attention_pos_emb_scale * pos_emb

        if self._is_streaming:
            self._streaming_state['offsets'] = offsets + T

        return input, cross_attention_output



# ============================================== From LM.py



logger = logging.getLogger(__name__)
ConditionTensors = tp.Dict[str, ConditionType]
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]]


def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None):
    """LM layer initialization.
    Inspired from xlformers: https://github.com/fairinternal/xlformers

    Args:
        method (str): Method name for init function. Valid options are:
            'gaussian', 'uniform'.
        input_dim (int): Input dimension of the initialized module.
        init_depth (int, optional): Optional init depth value used to rescale
            the standard deviation if defined.
    """
    # Compute std
    std = 1 / math.sqrt(input_dim)
    # Rescale with depth
    if init_depth is not None:
        std = std / math.sqrt(2 * init_depth)

    if method == 'gaussian':
        return partial(
            torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std
        )
    elif method == 'uniform':
        bound = math.sqrt(3) * std  # ensure the standard deviation is `std`
        return partial(torch.nn.init.uniform_, a=-bound, b=bound)
    else:
        raise ValueError("Unsupported layer initialization method")


def init_layer(m: nn.Module,
               method: str,
               init_depth: tp.Optional[int] = None,
               zero_bias_init: bool = False):
    """Wrapper around ``get_init_fn`` for proper initialization of LM modules.

    Args:
        m (nn.Module): Module to initialize.
        method (str): Method name for the init function.
        init_depth (int, optional): Optional init depth value used to rescale
            the standard deviation if defined.
        zero_bias_init (bool): Whether to initialize the bias to 0 or not.
    """
    if isinstance(m, nn.Linear):
        init_fn = get_init_fn(method, m.in_features, init_depth=init_depth)
        if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
            weight = m.weight.float()
            init_fn(weight)
            m.weight.data[:] = weight.half()
        else:
            init_fn(m.weight)
        if zero_bias_init and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Embedding):
        init_fn = get_init_fn(method, m.embedding_dim, init_depth=None)
        if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
            weight = m.weight.float()
            init_fn(weight)
            m.weight.data[:] = weight.half()
        else:
            init_fn(m.weight)


class ScaledEmbedding(nn.Embedding):
    """Boost learning rate for embeddings (with `scale`).
    """
    def __init__(self, *args, lr=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lr = lr

    def make_optim_group(self):
        group = {"params": list(self.parameters())}
        if self.lr is not None:
            group["lr"] = self.lr
        return group


@dataclass
class LMOutput:
    # The logits are already re-aligned with the input codes
    # hence no extra shift is required, e.g. when computing CE
    logits: torch.Tensor  # [B, K, T, card]
    mask: torch.Tensor  # [B, K, T]


class LMModel(StreamingModule):
    """Transformer-based language model on multiple streams of codes.

    Args:
        pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving.
        condition_provider (MusicConditioningProvider): Conditioning provider from metadata.
        fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input.
        n_q (int): Number of parallel streams to model.
        card (int): Cardinality, vocabulary size.
        dim (int): Dimension of the transformer encoder.
        num_heads (int): Number of heads for the transformer encoder.
        hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder.
        norm (str): Normalization method.
        norm_first (bool): Use pre-norm instead of post-norm.
        emb_lr (float, optional): Embedding-specific learning rate.
        bias_proj (bool): Use bias for output projections.
        weight_init (str, optional): Method for weight initialization.
        depthwise_init (str, optional): Method for depthwise weight initialization.
        zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros.
        cfg_dropout (float): Classifier-free guidance dropout.
        cfg_coef (float): Classifier-free guidance coefficient.
        attribute_dropout (dict): Attribute dropout probabilities.
        two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps.
        **kwargs: Additional parameters for the transformer encoder.
    """
    def __init__(self, pattern_provider: CodebooksPatternProvider, condition_provider: ConditioningProvider,
                 fuser: ConditionFuser, n_q: int = 8, card: int = 1024, dim: int = 128, num_heads: int = 8,
                 hidden_scale: int = 4, norm: str = 'layer_norm', norm_first: bool = False,
                 emb_lr: tp.Optional[float] = None, bias_proj: bool = True,
                 weight_init: tp.Optional[str] = None, depthwise_init: tp.Optional[str] = None,
                 zero_bias_init: bool = False, cfg_dropout: float = 0, cfg_coef: float = 1.0,
                 attribute_dropout: tp.Dict[str, tp.Dict[str, float]] = {}, two_step_cfg: bool = False,
                 **kwargs):
        super().__init__()
        self.cfg_coef = cfg_coef
        self.cfg_dropout = ClassifierFreeGuidanceDropout(p=cfg_dropout)
        self.att_dropout = AttributeDropout(p=attribute_dropout)
        self.condition_provider = condition_provider
        self.fuser = fuser
        self.card = card
        embed_dim = self.card + 1
        self.n_q = n_q
        self.dim = dim
        self.pattern_provider = pattern_provider
        self.two_step_cfg = two_step_cfg
        self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)])
        if 'activation' in kwargs:
            kwargs['activation'] = get_activation_fn(kwargs['activation'])
        self.transformer = StreamingTransformer(
            d_model=dim, num_heads=num_heads, dim_feedforward=int(hidden_scale * dim),
            norm=norm, norm_first=norm_first, **kwargs)
        self.out_norm: tp.Optional[nn.Module] = None
        if norm_first:
            self.out_norm = create_norm_fn(norm, dim)
        self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)])
        self._init_weights(weight_init, depthwise_init, zero_bias_init)
        self._fsdp: tp.Optional[nn.Module]
        self.__dict__['_fsdp'] = None

    def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool):
        """Initialization of the transformer module weights.

        Args:
            weight_init (str, optional): Weight initialization strategy. See ``get_init_fn`` for valid options.
            depthwise_init (str, optional): Depthwise initialization strategy. The following options are valid:
                'current' where the depth corresponds to the current layer index or 'global' where the total number
                of layer is used as depth. If not set, no depthwise initialization strategy is used.
            zero_bias_init (bool): Whether to initialize bias to zero or not.
        """
        assert depthwise_init is None or depthwise_init in ['current', 'global']
        assert depthwise_init is None or weight_init is not None, \
            "If 'depthwise_init' is defined, a 'weight_init' method should be provided."
        assert not zero_bias_init or weight_init is not None, \
            "If 'zero_bias_init', a 'weight_init' method should be provided"

        if weight_init is None:
            return

        for emb_layer in self.emb:
            init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)

        for layer_idx, tr_layer in enumerate(self.transformer.layers):
            depth = None
            if depthwise_init == 'current':
                depth = layer_idx + 1
            elif depthwise_init == 'global':
                depth = len(self.transformer.layers)
            init_fn = partial(init_layer, method=weight_init, init_depth=depth, zero_bias_init=zero_bias_init)
            tr_layer.apply(init_fn)

        for linear in self.linears:
            init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)

    @property
    def special_token_id(self) -> int:
        return self.card

    @property
    def num_codebooks(self) -> int:
        return self.n_q

    def forward(self, sequence: torch.Tensor,
                conditions: tp.List[ConditioningAttributes],
                condition_tensors: tp.Optional[ConditionTensors] = None,
                stage: int = -1) -> torch.Tensor:
        """Apply language model on sequence and conditions.
        Given a tensor of sequence of shape [B, K, S] with K the number of codebooks and
        S the sequence steps, return the logits with shape [B, card, K, S].

        Args:
            indices (torch.Tensor): Indices of the codes to model.
            conditions (list of ConditioningAttributes): Conditions to use when modeling
                the given codes. Note that when evaluating multiple time with the same conditioning
                you should pre-compute those and pass them as `condition_tensors`.
            condition_tensors (dict[str, ConditionType], optional): Pre-computed conditioning
                tensors, see `conditions`.
            stage (int): The codebook level that is being predicted. Relevant for MAGNeT
                in which prediction is done in a codebook-by-codebook manner.
                Takes values in range(n_q), and ignored by default.
        Returns:
            torch.Tensor: Logits.
        """
        B, K, S = sequence.shape
        assert K == self.num_codebooks, "Sequence shape must match the specified number of codebooks"
        input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
        if condition_tensors is None:
            assert not self._is_streaming, "Conditions tensors should be precomputed when streaming."
            # apply dropout modules
            conditions = self.cfg_dropout(conditions)
            conditions = self.att_dropout(conditions)
            tokenized = self.condition_provider.tokenize(conditions)
            # encode conditions and fuse, both have a streaming cache to not recompute when generating.
            condition_tensors = self.condition_provider(tokenized)
        else:
            assert not conditions, "Shouldn't pass both conditions and condition_tensors."

        input_, cross_attention_input = self.fuser(input_, condition_tensors)

        out = self.transformer(input_, cross_attention_src=cross_attention_input,
                               src_mask=(self.attn_mask_per_stage[stage] if stage >= 0 else None))
        if self.out_norm:
            out = self.out_norm(out)
        logits = torch.stack([self.linears[k](out) for k in range(K)], dim=1)  # [B, K, S, card]

        # remove the prefix from the model outputs
        if len(self.fuser.fuse2cond['prepend']) > 0:
            logits = logits[:, :, -S:]

        return logits  # [B, K, S, card]

    def compute_predictions(
            self, codes: torch.Tensor,
            conditions: tp.List[ConditioningAttributes],
            condition_tensors: tp.Optional[ConditionTensors] = None,
            stage: int = -1,
            keep_only_valid_steps: bool = True) -> LMOutput:
        """Given an input tensor of codes [B, K, T] and list of conditions, runs the model
        forward using the specified codes interleaving pattern.

        Args:
            codes (torch.Tensor): Input codes of shape [B, K, T] with B the batch size,
                K the number of codebooks and T the number of timesteps.
            conditions (list of ConditioningAttributes): conditionings to use when modeling
                the given codes. Note that when evaluating multiple time with the same conditioning
                you should pre-compute those and pass them as `condition_tensors`.
            condition_tensors (dict[str, ConditionType], optional): pre-computed conditioning
                tensors, see `conditions`.
            stage (int): The codebook level that is being predicted. Relevant for MAGNeT
                in which prediction is done in a codebook-by-codebook manner.
                Takes values in range(n_q), and ignored by default.
            keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
                Steps that are beyond valid steps will be replaced by the special_token in that case.
        Returns:
            LMOutput: Language model outputs
                logits (torch.Tensor) of shape [B, K, T, card] corresponding to the provided codes,
                    i.e. the first item corresponds to logits to predict the first code, meaning that
                    no additional shifting of codes and logits is required.
                mask (torch.Tensor) of shape [B, K, T], mask over valid and invalid positions.
                    Given the specified interleaving strategies, parts of the logits and codes should
                    not be considered as valid predictions because of invalid context.
        """
        B, K, T = codes.shape
        codes = codes.contiguous()
        # map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens
        pattern = self.pattern_provider.get_pattern(T)
        sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence(
            codes, self.special_token_id, keep_only_valid_steps=keep_only_valid_steps,
        )

        # apply model on pattern sequence
        model = self if self._fsdp is None else self._fsdp
        logits = model(sequence_codes, conditions, condition_tensors, stage=stage)  # [B, K, S, card]
        # map back the logits on pattern sequence to logits on original codes: [B, K, S, card] -> [B, K, T, card]
        # and provide the corresponding mask over invalid positions of tokens
        logits = logits.permute(0, 3, 1, 2)  # [B, card, K, S]
        # note: we use nans as special token to make it obvious if we feed unexpected logits
        logits, logits_indexes, logits_mask = pattern.revert_pattern_logits(
            logits, float('nan'), keep_only_valid_steps=keep_only_valid_steps
        )
        logits = logits.permute(0, 2, 3, 1)  # [B, K, T, card]
        logits_mask = logits_mask[None, :, :].expand(B, -1, -1)  # [K, T] -> [B, K, T]
        return LMOutput(logits, logits_mask)

    def _sample_next_token(self,
                           sequence,
                           cfg_conditions,
                           unconditional_state,
                           use_sampling=False,
                           temp: float = 1.0,
                           top_k: int = 0,
                           top_p: float = 0.0,
                           cfg_coef: tp.Optional[float] = None,
                           two_step_cfg: tp.Optional[bool] = None) -> torch.Tensor:
        """Sample next token from the model given a sequence and a set of conditions. The model supports
        multiple sampling strategies (greedy sampling, softmax, top-k, top-p...).

        Args:
            sequence (torch.Tensor): Current sequence of shape [B, K, S]
                with K corresponding to the number of codebooks and S the number of sequence steps.
                S = 1 in streaming mode, except for the first step that contains a bigger prompt.
            condition_tensors (dict[str, ConditionType): Set of conditions. If CFG is used,
                should be twice the batch size, being the concatenation of the conditions + null conditions.
            use_sampling (bool): Whether to use a sampling strategy or not.
            temp (float): Sampling temperature.
            top_k (int): K for "top-k" sampling.
            top_p (float): P for "top-p" sampling.
            cfg_coef (float, optional): classifier free guidance coefficient
        Returns:
            next_token (torch.Tensor): Next token tensor of shape [B, K, 1].
        """
        B = sequence.shape[0]
        cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef
        model = self if self._fsdp is None else self._fsdp
        two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
        if two_step_cfg and cfg_conditions != {}:
            assert isinstance(cfg_conditions, tuple), type(cfg_conditions)
            condition_tensors, null_condition_tensors = cfg_conditions
            cond_logits = model(sequence, conditions=[], condition_tensors=condition_tensors)
            state = self.get_streaming_state()
            self.set_streaming_state(unconditional_state)
            uncond_logits = model(sequence, conditions=[], condition_tensors=null_condition_tensors)
            unconditional_state.update(self.get_streaming_state())
            self.set_streaming_state(state)
            logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_coef
        else:
            assert isinstance(cfg_conditions, dict)
            condition_tensors = cfg_conditions
            if condition_tensors:
                # Preparing for CFG, predicting both conditional and unconditional logits.
                sequence = torch.cat([sequence, sequence], dim=0)
            all_logits = model(
                sequence,
                conditions=[], condition_tensors=condition_tensors)
            if condition_tensors:
                cond_logits, uncond_logits = all_logits.split(B, dim=0)  # [B, K, T, card]
                logits = uncond_logits + (cond_logits - uncond_logits) * cfg_coef
            else:
                logits = all_logits

        logits = logits.permute(0, 1, 3, 2)  # [B, K, card, T]
        logits = logits[..., -1]  # [B x K x card]

        # Apply softmax for sampling if temp > 0. Else, do greedy sampling to avoid zero division error.
        if use_sampling and temp > 0.0:
            probs = torch.softmax(logits / temp, dim=-1)
            if top_p > 0.0:
                next_token = utils.sample_top_p(probs, p=top_p)
            elif top_k > 0:
                next_token = utils.sample_top_k(probs, k=top_k)
            else:
                next_token = utils.multinomial(probs, num_samples=1)
        else:
            next_token = torch.argmax(logits, dim=-1, keepdim=True)

        return next_token

    @torch.no_grad()
    def generate(self,
                 prompt: tp.Optional[torch.Tensor] = None,
                 conditions: tp.List[ConditioningAttributes] = [],
                 num_samples: tp.Optional[int] = None,
                 max_gen_len: int = 256,
                 use_sampling: bool = True,
                 temp: float = 1.0,
                 top_k: int = 250,
                 top_p: float = 0.0,
                 cfg_coef: tp.Optional[float] = None,
                 two_step_cfg: tp.Optional[bool] = None,
                 remove_prompts: bool = False,
                 check: bool = False,
                 callback: tp.Optional[tp.Callable[[int, int], None]] = None,
                 **kwargs) -> torch.Tensor:
        """Generate tokens sampling from the model given a prompt or unconditionally. Generation can
        be performed in a greedy fashion or using sampling with top K and top P strategies.

        Args:
            prompt (torch.Tensor, optional): Prompt tokens of shape [B, K, T].
            conditions_tensors (list of ConditioningAttributes, optional): List of conditions.
            num_samples (int, optional): Number of samples to generate when no prompt and no conditions are given.
            max_gen_len (int): Maximum generation length.
            use_sampling (bool): Whether to use a sampling strategy or not.
            temp (float): Sampling temperature.
            top_k (int): K for "top-k" sampling.
            top_p (float): P for "top-p" sampling.
            cfg_coeff (float, optional): Classifier-free guidance coefficient.
            two_step_cfg (bool, optional): Whether to perform classifier-free guidance with two steps generation.
            remove_prompts (bool): Whether to remove prompts from generation or not.
            check (bool): Whether to apply further checks on generated sequence.
            callback (Callback, optional): Callback function to report generation progress.
        Returns:
            torch.Tensor: Generated tokens.
        """
        assert not self.training, "generation shouldn't be used in training mode."
        first_param = next(iter(self.parameters()))
        device = first_param.device

        # Checking all input shapes are consistent.
        possible_num_samples = []
        if num_samples is not None:
            possible_num_samples.append(num_samples)
        elif prompt is not None:
            possible_num_samples.append(prompt.shape[0])
        elif conditions:
            possible_num_samples.append(len(conditions))
        else:
            possible_num_samples.append(1)
        assert [x == possible_num_samples[0] for x in possible_num_samples], "Inconsistent inputs shapes"
        num_samples = possible_num_samples[0]

        # below we create set of conditions: one conditional and one unconditional
        # to do that we merge the regular condition together with the null condition
        # we then do 1 forward pass instead of 2.
        # the reason for that is two-fold:
        # 1. it is about x2 faster than doing 2 forward passes
        # 2. avoid the streaming API treating the 2 passes as part of different time steps
        # We also support doing two different passes, in particular to ensure that
        # the padding structure is exactly the same between train and test.
        # With a batch size of 1, this can be slower though.
        cfg_conditions: CFGConditions
        two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
        if conditions:
            null_conditions = ClassifierFreeGuidanceDropout(p=1.0)(conditions)
            if two_step_cfg:
                cfg_conditions = (
                    self.condition_provider(self.condition_provider.tokenize(conditions)),
                    self.condition_provider(self.condition_provider.tokenize(null_conditions)),
                )
            else:
                conditions = conditions + null_conditions
                tokenized = self.condition_provider.tokenize(conditions)
                cfg_conditions = self.condition_provider(tokenized)
        else:
            cfg_conditions = {}

        if prompt is None:
            assert num_samples > 0
            prompt = torch.zeros((num_samples, self.num_codebooks, 0), dtype=torch.long, device=device)

        B, K, T = prompt.shape
        start_offset = T
        assert start_offset < max_gen_len

        pattern = self.pattern_provider.get_pattern(max_gen_len)
        # this token is used as default value for codes that are not generated yet
        unknown_token = -1

        # we generate codes up to the max_gen_len that will be mapped to the pattern sequence
        gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device)
        # filling the gen_codes with the prompt if needed
        gen_codes[..., :start_offset] = prompt
        # create the gen_sequence with proper interleaving from the pattern: [B, K, S]
        gen_sequence, indexes, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
        # retrieve the start_offset in the sequence:
        # it is the first sequence step that contains the `start_offset` timestep
        start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
        assert start_offset_sequence is not None

        with self.streaming():
            unconditional_state = self.get_streaming_state()
            prev_offset = 0
            gen_sequence_len = gen_sequence.shape[-1]  # gen_sequence shape is [B, K, S]
            for offset in range(start_offset_sequence, gen_sequence_len):
                # get current sequence (note that the streaming API is providing the caching over previous offsets)
                curr_sequence = gen_sequence[..., prev_offset:offset]
                curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1)
                if check:
                    # check coherence between mask and sequence
                    assert (curr_sequence == torch.where(curr_mask, curr_sequence, self.special_token_id)).all()
                    # should never happen as gen_sequence is filled progressively
                    assert not (curr_sequence == unknown_token).any()
                # sample next token from the model, next token shape is [B, K, 1]
                next_token = self._sample_next_token(
                    curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p,
                    cfg_coef=cfg_coef, two_step_cfg=two_step_cfg)
                # ensure the tokens that should be masked are properly set to special_token_id
                # as the model never output special_token_id
                valid_mask = mask[..., offset:offset+1].expand(B, -1, -1)
                next_token[~valid_mask] = self.special_token_id
                # ensure we don't overwrite prompt tokens, we only write over unknown tokens
                # (then mask tokens should be left as is as well, which is correct)
                gen_sequence[..., offset:offset+1] = torch.where(
                    gen_sequence[..., offset:offset+1] == unknown_token,
                    next_token, gen_sequence[..., offset:offset+1]
                )
                prev_offset = offset
                if callback is not None:
                    callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence)
        unconditional_state.clear()

        # ensure sequence has been entirely filled
        assert not (gen_sequence == unknown_token).any()
        # ensure gen_sequence pattern and mask are matching
        # which means the gen_sequence is valid according to the pattern
        assert (
            gen_sequence == torch.where(mask[None, ...].expand(B, -1, -1), gen_sequence, self.special_token_id)
        ).all()
        # get back the codes, trimming the prompt if needed and cutting potentially incomplete timesteps
        out_codes, out_indexes, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)

        # sanity checks over the returned codes and corresponding masks
        assert (out_codes[..., :max_gen_len] != unknown_token).all()
        assert (out_mask[..., :max_gen_len] == 1).all()

        out_start_offset = start_offset if remove_prompts else 0
        out_codes = out_codes[..., out_start_offset:max_gen_len]

        # ensure the returned codes are all valid
        assert (out_codes >= 0).all() and (out_codes <= self.card).all()
        return out_codes