File size: 5,823 Bytes
6e78f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

# -*- coding: utf-8 -*-
import numpy as np
import soundfile
import audresample
import text_utils
import msinference
import re
import srt
import subprocess
import markdown
import json
from pathlib import Path
from types import SimpleNamespace
from flask import Flask, request, send_from_directory
from flask_cors import CORS
from audiocraft.audiogen import AudioGen, audio_write

sound_generator = AudioGen.get_pretrained('facebook/audiogen-medium')
sound_generator.set_generation_params(duration=6)

CACHE_DIR = 'flask_cache/'
Path(CACHE_DIR).mkdir(parents=True, exist_ok=True)


def _shift(x):
    n = x.shape[0]
    i = np.random.randint(.24 * n, max(1, .74 * n))  # high should be above >= 0
    x = np.roll(x, i)
    # fade_in = .5 + .5 * np.tanh(4*(np.linspace(-10, 10, x.shape[0]) + 9.4))
    # x = x * fade_in
    return x

def overlay(x, sound_background=None):
    if sound_background is not None:
        sound_background = sound_background.detach().cpu().numpy()[0, :]
        len_speech = len(x)
        if len_speech > len(sound_background):
            n_repeat = len_speech // len(sound_background) + 1
            replica = [sound_background] * n_repeat
            replica = [_shift(_) for _ in replica]
            sound_background = np.concatenate(replica)
            
            
        print(f'\nSOUND BACKGROUND SHAPE\n{sound_background.shape=}\n{x.shape=}\n- - - -')
        x = .74 * x + .26 * sound_background[:len_speech]
    return x

def tts_multi_sentence(precomputed_style_vector=None,
                       text=None,
                       voice=None,
                       scene=None):
    '''create 24kHZ np.array with tts

       precomputed_style_vector :   required if en_US or en_UK in voice, so
                                    to perform affective TTS.
       text  : string
       voice : string or None (falls to styleTTS)
       scene : 'A castle in far away lands' -> if passed will generate background sound scene
       '''
    # Generate sound scene - up sample to 24KHz
    if scene is not None:
        
        sound_background = sound_generator.generate([scene])[0]
        sound_background = audio_write(None, 
                                       sound_background.cpu(), 
                                       24000,  # sound_generator.sample_rate, 
                                       strategy="loudness", 
                                       loudness_compressor=True)
    else:
        sound_background = None
        
    # StyleTTS2
    if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
        assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
        x = []
        for _sentence in text:
            x.append(msinference.inference(_sentence,
                        precomputed_style_vector,
                                    alpha=0.3,
                                    beta=0.7,
                                    diffusion_steps=7,
                                    embedding_scale=1))
        x = np.concatenate(x)
        
        return overlay(x, sound_background)
    
    # Fallback - Mimic-3
    text_utils.store_ssml(text=text, voice=voice)  # Text has to be list of single sentences
    ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
    ps.wait()
    x, fs = soundfile.read('_tmp.wav')
    x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :]  # reshapes (64,) -> (1,64)
    
    return overlay(x, sound_background)
    



# voices = {}
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)

app = Flask(__name__)
cors = CORS(app)


@app.route("/")
def index():
    with open('README.md', 'r') as f:
        return markdown.markdown(f.read())


@app.route("/", methods=['GET', 'POST', 'PUT'])
def serve_wav():
    # https://stackoverflow.com/questions/13522137/in-flask-convert-form-post-
    #                      object-into-a-representation-suitable-for-mongodb
    r = request.form.to_dict(flat=False)
    

    args = SimpleNamespace(
        text=None if r.get('text') is None else r.get('text'),  # string not file?
        voice=r.get('voice')[0],
        native=None if r.get('native') is None else CACHE_DIR + r.get('native')[0].replace("/",""),
        affective = r.get('affective')[0],
        scene=r.get('scene')[0]
        )
    # print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
    

    print(args, 'ENTER Script')
    do_video_dub = False
        
    # ====STYLE VECTOR====

    precomputed_style_vector = None
    # NOTE: style vector may be None

    if precomputed_style_vector is None:
        if 'en_US' in args.voice or 'en_UK' in args.voice:
            _dir = '/' if args.affective else '_v2/'
            precomputed_style_vector = msinference.compute_style(
                'assets/wavs/style_vector' + _dir + args.voice.replace(
                    '/', '_').replace(
                    '#', '_').replace(
                    'cmu-arctic', 'cmu_arctic').replace(
                    '_low', '') + '.wav')
    print('\n  STYLE VECTOR \n', precomputed_style_vector.shape)


    
    
    x = tts_multi_sentence(text=args.text,
                            precomputed_style_vector=precomputed_style_vector, 
                            voice=args.voice,
                            scene=args.scene)
    OUT_FILE = 'tmp.wav'
    soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)


    
    
    
    # send server's output as default file -> srv_result.xx
    print(f'\n=SERVER saved as {OUT_FILE=}\n')
    response = send_from_directory(CACHE_DIR, path=OUT_FILE)
    response.headers['suffix-file-type'] = OUT_FILE
    return response


if __name__ == "__main__":
    app.run(host="0.0.0.0")