File size: 5,200 Bytes
9b9c715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Synthesize all Harvard Lists 77x lists of 10x sentences to single .wav ----- NEEDS TO BE RUN from https://github.com/audeering/shift/
#
# 1. using mimic3 style
#     Folder: 'prompt_mimic3/'
# 2. using mimic3 4x accelerated style
#     Folder: 'prompt_mimic3speed/'
# 3. using crema-d style
#     Folder: 'prompt_human/'
#
# WAVS used from  tts_paper_plot.py

import soundfile
import json
import numpy as np
import audb
from pathlib import Path

LABELS = ['arousal', 'dominance', 'valence']




def load_speech(split=None):
    DB = [
        # [dataset, version, table, has_timdeltas_or_is_full_wavfile]
           ['crema-d', '1.1.1', 'emotion.voice.test', False],
 #           ['emodb',  '1.2.0', 'emotion.categories.train.gold_standard', False],
  #          ['entertain-playtestcloud', '1.1.0', 'emotion.categories.train.gold_standard', True],
   #         ['erik', '2.2.0', 'emotion.categories.train.gold_standard', True],
    #        ['meld', '1.3.1', 'emotion.categories.train.gold_standard', False],
            # ['msppodcast', '5.0.0', 'emotion.categories.train.gold_standard', False],  # tandalone bucket because it has gt labels?
     #       ['myai', '1.0.1', 'emotion.categories.train.gold_standard', False],
      #      ['casia', None, 'emotion.categories.gold_standard', False],
            # ['switchboard-1', None, 'sentiment', True],
            # ['swiss-parliament', None, 'segments', True], 
            # ['argentinian-parliament', None, 'segments', True],
            # ['austrian-parliament', None, 'segments', True],
            # #'german', --> bundestag
            # ['brazilian-parliament', None, 'segments', True],
            # ['mexican-parliament', None, 'segments', True],
            # ['portuguese-parliament', None, 'segments', True],
       #     ['spanish-parliament', None, 'segments', True],
        #    ['chinese-vocal-emotions-liu-pell', None, 'emotion.categories.desired', False],
            # peoples-speech slow
         #   ['peoples-speech', None, 'train-initial', False]
    ]

    output_list = []
    for database_name, ver, table, has_timedeltas in DB:

        a = audb.load(database_name,
                        sampling_rate=16000,
                        format='wav',
                        mixdown=True,
                        version=ver,
                        cache_root='/cache/audb/')
        a = a[table].get()
        if has_timedeltas:
            print(f'{has_timedeltas=}')
            # a = a.reset_index()[['file', 'start', 'end']]
            # output_list += [[*t] for t
            #         in zip(a.file.values, a.start.dt.total_seconds().values, a.end.dt.total_seconds().values)]
        else:
            output_list += [f for f in a.index]  # use file (no timedeltas)
    return output_list





# Generate 77 wavs




with open('voices.json', 'r') as f:
    df = json.load(f)['voices']
voice_names = [v['voice'] for k,v in df.items()]
synthetic_wav_paths = []
synthetic_wav_paths_AFFECT = []
for voice in voice_names:
    
    synthetic_wav_paths.append(
      'assets/wavs/style_vector/' + voice.replace('/', '_').replace('#', '_').replace(
                    'cmu-arctic', 'cmu_arctic').replace('_low', '') + '.wav')
    synthetic_wav_paths_AFFECT.append(
        'assets/wavs/style_vector_v2/' + voice.replace('/', '_').replace('#', '_').replace(
                    'cmu-arctic', 'cmu_arctic').replace('_low', '') + '.wav')


print(len(synthetic_wav_paths))

    
natural_wav_paths = load_speech()


# SYNTHESIZE mimic mimicx4 crema-d
import msinference


with open('harvard.json', 'r') as f:
    harvard_individual_sentences = json.load(f)['sentences']





for audio_prompt in ['mimic3', 'mimic3_speed', 'human']:
    total_audio = []
    ix = 0
    for list_of_10 in harvard_individual_sentences:
        # long_sentence = ' '.join(list_of_10['sentences'])
        # harvard.append(long_sentence.replace('.', ' '))
        for text in list_of_10['sentences']:
            if audio_prompt == 'mimic3':
                style_vec = msinference.compute_style(
                    synthetic_wav_paths[ix % 134])
            elif audio_prompt == 'mimic3_speed':
                style_vec = msinference.compute_style(
                    synthetic_wav_paths_AFFECT[ix % 134])
            elif audio_prompt == 'human':
                style_vec = msinference.compute_style(
                    natural_wav_paths[ix % len(natural_wav_paths)])
            else:
                print('unknonw list of style vecto')
            print(ix, text)
            ix += 1
            x = msinference.inference(text,
                                        style_vec,
                                        alpha=0.3,
                                        beta=0.7,
                                        diffusion_steps=7,
                                        embedding_scale=1)
            
            total_audio.append(x)
            # concat before write
        # -- for 10x sentenctes
        print('_____________________')
    # -- for 77x lists
    total_audio = np.concatenate(total_audio)    
    soundfile.write(f'{audio_prompt}_770.wav', total_audio, 24000)
    print(f'{audio_prompt}_full_770.wav')