File size: 9,418 Bytes
d72b2c3
 
54adc39
d72b2c3
54adc39
 
 
 
d9889a1
d72b2c3
0a8807e
e366cd5
d72b2c3
 
 
54adc39
d72b2c3
fe62fb4
d912185
3dfbf53
d72b2c3
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d912185
 
 
d72b2c3
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8807e
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfe0d4
 
 
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
54adc39
 
 
 
 
 
 
 
d72b2c3
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
dcfe0d4
54adc39
 
 
 
dcfe0d4
 
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e366cd5
54adc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import typing as tp
import omegaconf
from torch import nn
import torch
from huggingface_hub import hf_hub_download
import os
from omegaconf import OmegaConf, DictConfig

from .encodec import EncodecModel
from .lm import LMModel
from .seanet import SEANetDecoder
from .codebooks_patterns import DelayedPatternProvider
from .conditioners import (
    ConditioningProvider,
    T5Conditioner,
    ConditioningAttributes
)
from .vq import ResidualVectorQuantizer




def _delete_param(cfg: DictConfig, full_name: str):
    parts = full_name.split('.')
    for part in parts[:-1]:
        if part in cfg:
            cfg = cfg[part]
        else:
            return
    OmegaConf.set_struct(cfg, False)
    if parts[-1] in cfg:
        del cfg[parts[-1]]
    OmegaConf.set_struct(cfg, True)



def dict_from_config(cfg):
    dct = omegaconf.OmegaConf.to_container(cfg, resolve=True)
    return dct








# ============================================== DEFINE AUDIOGEN






class AudioGen(nn.Module):
    
    # https://huggingface.co/facebook/audiogen-medium
    
    def __init__(self,
                 duration=0.024,
                 device='cpu'):

        super().__init__()
        self.device = device  # needed for loading & select float16 LM
        self.load_compression_model()
        self.load_lm_model()
        self.duration = duration

    @property
    def frame_rate(self):
        return self.compression_model.frame_rate
    
    def generate(self,
                 descriptions):
        with torch.no_grad():
            attributes = [
                ConditioningAttributes(text={'description': d}) for d in descriptions]
            gen_tokens = self.lm.generate(
                conditions=attributes,
                max_gen_len=int(self.duration * self.frame_rate)) # [bs, 4, 37 * self.lm.n_draw]
            x = self.compression_model.decode(gen_tokens, None)   #[bs, 1, 11840]
            print('______________\nGENTOk 5', gen_tokens.shape)
            print('GENAUD 5', x.sum())
        return x    

    # == BUILD Fn
    def get_quantizer(self, quantizer, cfg, dimension):
        klass = {
            'no_quant': None,
            'rvq': ResidualVectorQuantizer
        }[quantizer]
        kwargs = dict_from_config(getattr(cfg, quantizer))
        if quantizer != 'no_quant':
            kwargs['dimension'] = dimension
        return klass(**kwargs)


    def get_encodec_autoencoder(self, cfg):
        kwargs = dict_from_config(getattr(cfg, 'seanet'))
        _ = kwargs.pop('encoder')
        decoder_override_kwargs = kwargs.pop('decoder')
        decoder_kwargs = {**kwargs, **decoder_override_kwargs}
        decoder = SEANetDecoder(**decoder_kwargs)
        return decoder
        


    def get_compression_model(self, cfg):
        """Instantiate a compression model."""
        if cfg.compression_model == 'encodec':
            kwargs = dict_from_config(getattr(cfg, 'encodec'))
            quantizer_name = kwargs.pop('quantizer')
            decoder = self.get_encodec_autoencoder(cfg)
            quantizer = self.get_quantizer(quantizer_name, cfg, 128)
            renormalize = kwargs.pop('renormalize', False)
            # deprecated params
            # print(f'{frame_rate=} {encoder.dimension=}')  frame_rate=50 encoder.dimension=128
            kwargs.pop('renorm', None)
            # print('\n______!____________\n', kwargs, '\n______!____________\n')
            #     ______!____________
            #     {'autoencoder': 'seanet', 'sample_rate': 16000, 'channels': 1, 'causal': False} 
            #     ______!____________

            return EncodecModel(decoder=decoder,
                                quantizer=quantizer,
                                frame_rate=50,
                                renormalize=renormalize, 
                                sample_rate=16000,
                                channels=1,
                                causal=False
                                ).to(cfg.device)
        else:
            raise KeyError(f"Unexpected compression model {cfg.compression_model}")


    def get_lm_model(self, cfg):
        """Instantiate a transformer LM."""
        if cfg.lm_model in ['transformer_lm', 
                            'transformer_lm_magnet']:
            kwargs = dict_from_config(getattr(cfg, 'transformer_lm'))
            n_q = kwargs['n_q']
            q_modeling = kwargs.pop('q_modeling', None)
            codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern')
            attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout'))
            cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance'))
            cfg_prob, cfg_coef = cls_free_guidance['training_dropout'], cls_free_guidance['inference_coef']
            
            condition_provider = self.get_conditioner_provider(kwargs["dim"], cfg
                                                               ).to(self.device)
            
            
            # if len(fuser.fuse2cond['cross']) > 0:  # enforce cross-att programmatically
            kwargs['cross_attention'] = True
            if codebooks_pattern_cfg.modeling is None:
                print('Q MODELING\n=\n=><')
                assert q_modeling is not None, \
                    "LM model should either have a codebook pattern defined or transformer_lm.q_modeling"
                codebooks_pattern_cfg = omegaconf.OmegaConf.create(
                    {'modeling': q_modeling, 'delay': {'delays': list(range(n_q))}}
                )

            pattern_provider = self.get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg)
            return LMModel(
                pattern_provider=pattern_provider,
                condition_provider=condition_provider,
                cfg_dropout=cfg_prob,
                cfg_coef=cfg_coef,
                attribute_dropout=attribute_dropout,
                dtype=getattr(torch, cfg.dtype),
                device=self.device,
                **kwargs
            ).to(cfg.device)
        else:
            raise KeyError(f"Unexpected LM model {cfg.lm_model}")


    def get_conditioner_provider(self, output_dim, 
                                cfg):
        """Instantiate T5 text"""
        cfg = getattr(cfg, 'conditioners')
        dict_cfg = {} if cfg is None else dict_from_config(cfg)
        conditioners={}
        condition_provider_args = dict_cfg.pop('args', {})
        condition_provider_args.pop('merge_text_conditions_p', None)
        condition_provider_args.pop('drop_desc_p', None)

        for cond, cond_cfg in dict_cfg.items():
            model_type = cond_cfg['model']
            model_args = cond_cfg[model_type]
            if model_type == 't5':
                conditioners[str(cond)] = T5Conditioner(output_dim=output_dim, 
                                                        device=self.device, 
                                                        **model_args)
            else:
                raise ValueError(f"Unrecognized conditioning model: {model_type}")
        
        # print(f'{condition_provider_args=}')
        return ConditioningProvider(conditioners)




    def get_codebooks_pattern_provider(self, n_q, cfg):
        pattern_providers = {
            'delay': DelayedPatternProvider,  # THIS
        }
        name = cfg.modeling
        kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {}
        
        klass = pattern_providers[name]
        return klass(n_q, **kwargs)
    
    # ======================
    def load_compression_model(self):
        file = hf_hub_download(
            repo_id='facebook/audiogen-medium', 
            filename="compression_state_dict.bin", 
            cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
            library_name="audiocraft", 
            library_version= '1.3.0a1')  # Found at __init__.py #audiocraft.__version__)
        pkg = torch.load(file, map_location='cpu')
        # if 'pretrained' in pkg:
        #     print('NO RPtrained\n=\n=\n=\n=\n=')
        #     return EncodecModel.get_pretrained(pkg['pretrained'], device='cpu')
        cfg = OmegaConf.create(pkg['xp.cfg'])
        cfg.device = 'cpu'
        model = self.get_compression_model(cfg)
        model.load_state_dict(pkg['best_state'], strict=False)  # ckpt has also unused encoder weights
        # return model
        self.compression_model = model

    def load_lm_model(self):
        file = hf_hub_download(
            repo_id='facebook/audiogen-medium', 
            filename="state_dict.bin", 
            cache_dir=os.environ.get('AUDIOCRAFT_CACHE_DIR', None),
            library_name="audiocraft", 
            library_version= '1.3.0a1')  # Found at __init__.py #audiocraft.__version__)
        pkg = torch.load(file, 
                        map_location=self.device) #'cpu')
        cfg = OmegaConf.create(pkg['xp.cfg'])
        # cfg.device = 'cpu'
        if self.device == 'cpu':
            cfg.dtype = 'float32'
        else:
            cfg.dtype = 'float16'
        _delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path')
        _delete_param(cfg, 'conditioners.args.merge_text_conditions_p')
        _delete_param(cfg, 'conditioners.args.drop_desc_p')
        model = self.get_lm_model(cfg)
        model.load_state_dict(pkg['best_state'])
        model.cfg = cfg
        # return model
        self.lm = model.to(torch.float)