File size: 7,060 Bytes
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5067878
d72b2c3
0a8807e
e366cd5
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8807e
 
 
 
 
 
 
 
d72b2c3
 
0a8807e
d72b2c3
 
 
 
0a8807e
 
d72b2c3
 
0a8807e
d72b2c3
0a8807e
 
 
 
 
 
 
 
 
 
 
 
 
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e366cd5
d72b2c3
e366cd5
d72b2c3
 
 
e366cd5
d72b2c3
 
 
 
e366cd5
d72b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
All the functions to build the relevant models and modules
from the Hydra config.
"""

import typing as tp
import omegaconf
import torch

from .encodec import CompressionModel, EncodecModel
from .lm import LMModel
from .seanet import SEANetDecoder
from .codebooks_patterns import DelayedPatternProvider
from .conditioners import (
    BaseConditioner,
    ConditionFuser,
    ConditioningProvider,
    T5Conditioner,
)
from .unet import DiffusionUnet
import audiocraft.quantization as qt
from .utils.utils import dict_from_config
from .diffusion_schedule import MultiBandProcessor, SampleProcessor


def get_quantizer(quantizer: str, cfg: omegaconf.DictConfig, dimension: int) -> qt.BaseQuantizer:
    klass = {
        'no_quant': qt.DummyQuantizer,
        'rvq': qt.ResidualVectorQuantizer
    }[quantizer]
    kwargs = dict_from_config(getattr(cfg, quantizer))
    if quantizer != 'no_quant':
        kwargs['dimension'] = dimension
    return klass(**kwargs)


def get_encodec_autoencoder(cfg):
    kwargs = dict_from_config(getattr(cfg, 'seanet'))
    _ = kwargs.pop('encoder')
    decoder_override_kwargs = kwargs.pop('decoder')
    decoder_kwargs = {**kwargs, **decoder_override_kwargs}
    decoder = SEANetDecoder(**decoder_kwargs)
    return decoder
    


def get_compression_model(cfg):
    """Instantiate a compression model."""
    if cfg.compression_model == 'encodec':
        kwargs = dict_from_config(getattr(cfg, 'encodec'))
        quantizer_name = kwargs.pop('quantizer')
        decoder = get_encodec_autoencoder(cfg)
        quantizer = get_quantizer(quantizer_name, cfg, 128)
        renormalize = kwargs.pop('renormalize', False)
        # deprecated params
        # print(f'{frame_rate=} {encoder.dimension=}')  frame_rate=50 encoder.dimension=128
        kwargs.pop('renorm', None)
        # print('\n______!____________\n', kwargs, '\n______!____________\n')
        #     ______!____________
        #     {'autoencoder': 'seanet', 'sample_rate': 16000, 'channels': 1, 'causal': False} 
        #     ______!____________

        return EncodecModel(decoder=decoder,
                            quantizer=quantizer,
                            frame_rate=50,
                            renormalize=renormalize, 
                            sample_rate=16000,
                            channels=1,
                            causal=False
                            ).to(cfg.device)
    else:
        raise KeyError(f"Unexpected compression model {cfg.compression_model}")


def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel:
    """Instantiate a transformer LM."""
    if cfg.lm_model in ['transformer_lm', 'transformer_lm_magnet']:
        kwargs = dict_from_config(getattr(cfg, 'transformer_lm'))
        n_q = kwargs['n_q']
        q_modeling = kwargs.pop('q_modeling', None)
        codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern')
        attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout'))
        cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance'))
        cfg_prob, cfg_coef = cls_free_guidance['training_dropout'], cls_free_guidance['inference_coef']
        fuser = get_condition_fuser(cfg)
        condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device)
        if len(fuser.fuse2cond['cross']) > 0:  # enforce cross-att programmatically
            kwargs['cross_attention'] = True
        if codebooks_pattern_cfg.modeling is None:
            assert q_modeling is not None, \
                "LM model should either have a codebook pattern defined or transformer_lm.q_modeling"
            codebooks_pattern_cfg = omegaconf.OmegaConf.create(
                {'modeling': q_modeling, 'delay': {'delays': list(range(n_q))}}
            )

        pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg)
        # lm_class = MagnetLMModel if cfg.lm_model == 'transformer_lm_magnet' else LMModel
        lm_class = LMModel # hard coded D
        print(f'{lm_class=}\n\n\n\n=====================')
        return lm_class(
            pattern_provider=pattern_provider,
            condition_provider=condition_provider,
            fuser=fuser,
            cfg_dropout=cfg_prob,
            cfg_coef=cfg_coef,
            attribute_dropout=attribute_dropout,
            dtype=getattr(torch, cfg.dtype),
            device=cfg.device,
            **kwargs
        ).to(cfg.device)
    else:
        raise KeyError(f"Unexpected LM model {cfg.lm_model}")


def get_conditioner_provider(output_dim: int, cfg: omegaconf.DictConfig) -> ConditioningProvider:
    """Instantiate a conditioning model."""
    device = cfg.device
    duration = cfg.dataset.segment_duration
    cfg = getattr(cfg, 'conditioners')
    dict_cfg = {} if cfg is None else dict_from_config(cfg)
    conditioners: tp.Dict[str, BaseConditioner] = {}
    condition_provider_args = dict_cfg.pop('args', {})
    condition_provider_args.pop('merge_text_conditions_p', None)
    condition_provider_args.pop('drop_desc_p', None)

    for cond, cond_cfg in dict_cfg.items():
        model_type = cond_cfg['model']
        model_args = cond_cfg[model_type]
        if model_type == 't5':
            conditioners[str(cond)] = T5Conditioner(output_dim=output_dim, device=device, **model_args)
        else:
            raise ValueError(f"Unrecognized conditioning model: {model_type}")
    conditioner = ConditioningProvider(conditioners, device=device, **condition_provider_args)
    return conditioner


def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser:
    """Instantiate a condition fuser object."""
    fuser_cfg = getattr(cfg, 'fuser')
    fuser_methods = ['sum', 'cross', 'prepend', 'input_interpolate']
    fuse2cond = {k: fuser_cfg[k] for k in fuser_methods}
    kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods}
    fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs)
    return fuser


def get_codebooks_pattern_provider(n_q, cfg):
    pattern_providers = {
        'delay': DelayedPatternProvider,  # THIS
    }
    name = cfg.modeling
    kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {}
    
    klass = pattern_providers[name]
    return klass(n_q, **kwargs)





def get_diffusion_model(cfg: omegaconf.DictConfig):
    # TODO Find a way to infer the channels from dset
    channels = cfg.channels
    num_steps = cfg.schedule.num_steps
    return DiffusionUnet(
            chin=channels, num_steps=num_steps, **cfg.diffusion_unet)


def get_processor(cfg, sample_rate: int = 24000):
    sample_processor = SampleProcessor()
    if cfg.use:
        kw = dict(cfg)
        kw.pop('use')
        kw.pop('name')
        if cfg.name == "multi_band_processor":
            sample_processor = MultiBandProcessor(sample_rate=sample_rate, **kw)
    return sample_processor