File size: 19,798 Bytes
4e4c64c
 
 
 
 
 
 
ac6157a
4e4c64c
 
a032fce
 
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
bb2cd38
 
 
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
ac6157a
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989ad3f
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fd0c3
4e4c64c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb2cd38
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
#coding:utf-8

import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, spectral_norm
from Utils.ASR.models import ASRCNN
from Utils.JDC.model import JDCNet
from munch import Munch
import yaml


class LearnedDownSample(nn.Module):
    def __init__(self, layer_type, dim_in):
        super().__init__()
        self.layer_type = layer_type

        if self.layer_type == 'none':
            self.conv = nn.Identity()
        elif self.layer_type == 'timepreserve':
            self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
        elif self.layer_type == 'half':
            self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)

    def forward(self, x):
        return self.conv(x)


class DownSample(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        elif self.layer_type == 'timepreserve':
            return F.avg_pool2d(x, (2, 1))
        elif self.layer_type == 'half':
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool2d(x, 2)
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)


class UpSample(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        elif self.layer_type == 'timepreserve':
            return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
        elif self.layer_type == 'half':
            return F.interpolate(x, scale_factor=2, mode='nearest')
        else:
            raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)


class ResBlk(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none'):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample = DownSample(downsample)
        self.downsample_res = LearnedDownSample(downsample, dim_in)
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        if self.downsample:
            x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = self.conv1(x)
        x = self.downsample_res(x)
        if self.normalize:
            x = self.norm2(x)
        x = self.actv(x)
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance


class StyleEncoder(nn.Module):

    # used for both acoustic & prosodic ref_s/p

    def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
        super().__init__()
        blocks = []
        blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]

        repeat_num = 4
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, downsample='half')]
            dim_in = dim_out

        blocks += [nn.LeakyReLU(0.2)]
        blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
        blocks += [nn.AdaptiveAvgPool2d(1)]
        blocks += [nn.LeakyReLU(0.2)]
        self.shared = nn.Sequential(*blocks)

        self.unshared = nn.Linear(dim_out, style_dim)

    def forward(self, x):
        h = self.shared(x)
        h = h.view(h.size(0), -1)
        s = self.unshared(h)
        return s


class LinearNorm(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)


class ResBlk1d(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none', dropout_p=0.2):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample_type = downsample
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)
        self.dropout_p = dropout_p
        
        if self.downsample_type == 'none':
            self.pool = nn.Identity()
        else:
            self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))

    def downsample(self, x):
        if self.downsample_type == 'none':
            return x
        else:
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool1d(x, 2)

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv1(x)
        x = self.pool(x)
        if self.normalize:
            x = self.norm2(x)
            
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)

class TextEncoder(nn.Module):
    def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
        super().__init__()
        self.embedding = nn.Embedding(n_symbols, channels)

        padding = (kernel_size - 1) // 2
        self.cnn = nn.ModuleList()
        for _ in range(depth):
            self.cnn.append(nn.Sequential(
                weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
                LayerNorm(channels),
                actv,
                nn.Dropout(0.2),
            ))
        # self.cnn = nn.Sequential(*self.cnn)

        self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)

    def forward(self, x, input_lengths, m):
        x = self.embedding(x)  # [B, T, emb]
        x = x.transpose(1, 2)  # [B, emb, T]
        m = m.to(input_lengths.device).unsqueeze(1)
        x.masked_fill_(m, 0.0)
        
        for c in self.cnn:
            x = c(x)
            x.masked_fill_(m, 0.0)
            
        x = x.transpose(1, 2)  # [B, T, chn]

        input_lengths = input_lengths.cpu().numpy()
        x = nn.utils.rnn.pack_padded_sequence(
            x, input_lengths, batch_first=True, enforce_sorted=False)

        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        x, _ = nn.utils.rnn.pad_packed_sequence(
            x, batch_first=True)
                
        x = x.transpose(-1, -2)
        x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])

        x_pad[:, :, :x.shape[-1]] = x
        x = x_pad.to(x.device)
        
        x.masked_fill_(m, 0.0)
        
        return x

    def inference(self, x):
        x = self.embedding(x)
        x = x.transpose(1, 2)
        x = self.cnn(x)
        x = x.transpose(1, 2)
        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        return x
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask



class AdaIN1d(nn.Module):
    def __init__(self, style_dim, num_features):
        super().__init__()
        self.norm = nn.InstanceNorm1d(num_features, affine=False)
        self.fc = nn.Linear(style_dim, num_features*2)

    def forward(self, x, s):
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        # affine (1 + lin(x)) * inst(x) + lin(x)    is this a skip connection where the weight is a lin of itself
        return (1 + gamma) * self.norm(x) + beta    # norm(x) = PLBERT has norm / beta&gamma = style has no norm()

class UpSample1d(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        else:
            return F.interpolate(x, scale_factor=2, mode='nearest')

class AdainResBlk1d(nn.Module):
    def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
                 upsample='none', dropout_p=0.0):
        super().__init__()
        self.actv = actv
        self.upsample_type = upsample
        self.upsample = UpSample1d(upsample)
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out, style_dim)
        self.dropout = nn.Dropout(dropout_p)
        
        if upsample == 'none':
            self.pool = nn.Identity()
        else:
            self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
        
        
    def _build_weights(self, dim_in, dim_out, style_dim):
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
        self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
        self.norm1 = AdaIN1d(style_dim, dim_in)
        self.norm2 = AdaIN1d(style_dim, dim_out)
        if self.learned_sc:
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))

    def _shortcut(self, x):
        x = self.upsample(x)
        if self.learned_sc:
            x = self.conv1x1(x)
        return x

    def _residual(self, x, s):
        x = self.norm1(x, s)
        x = self.actv(x)
        x = self.pool(x)
        x = self.conv1(self.dropout(x))
        x = self.norm2(x, s)
        x = self.actv(x)
        x = self.conv2(self.dropout(x))
        return x

    def forward(self, x, s):
        out = self._residual(x, s)
        out = (out + self._shortcut(x)) / math.sqrt(2)
        return out
    
class AdaLayerNorm(nn.Module):
    def __init__(self, style_dim, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.fc = nn.Linear(style_dim, channels*2)

    def forward(self, x, s):
        x = x.transpose(-1, -2)
        x = x.transpose(1, -1)
                
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
        
        
        x = F.layer_norm(x, (self.channels,), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x.transpose(1, -1).transpose(-1, -2)

class ProsodyPredictor(nn.Module):

    def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
        super().__init__() 
        
        self.text_encoder = DurationEncoder(sty_dim=style_dim, 
                                            d_model=d_hid,
                                            nlayers=nlayers, 
                                            dropout=dropout)

        self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.duration_proj = LinearNorm(d_hid, max_dur)
        
        self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        self.F0 = nn.ModuleList()
        self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))

        self.N = nn.ModuleList()
        self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        
        self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
        self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
    
    def F0Ntrain(self, x, s):
        x, _ = self.shared(x.transpose(-1, -2))
        
        F0 = x.transpose(-1, -2)
        for block in self.F0:
            F0 = block(F0, s)
        F0 = self.F0_proj(F0)

        N = x.transpose(-1, -2)
        for block in self.N:
            N = block(N, s)
        N = self.N_proj(N)
        
        return F0.squeeze(1), N.squeeze(1)
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask
    
class DurationEncoder(nn.Module):

    def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
        super().__init__()
        self.lstms = nn.ModuleList()
        for _ in range(nlayers):
            self.lstms.append(nn.LSTM(d_model + sty_dim, 
                                 d_model // 2, 
                                 num_layers=1, 
                                 batch_first=True, 
                                 bidirectional=True, 
                                 dropout=dropout))
            self.lstms.append(AdaLayerNorm(sty_dim, d_model))
        
        
        self.dropout = dropout
        self.d_model = d_model
        self.sty_dim = sty_dim

    def forward(self, x, style, text_lengths, m):
        masks = m.to(text_lengths.device)
        
        x = x.permute(2, 0, 1)
        s = style.expand(x.shape[0], x.shape[1], -1)
        x = torch.cat([x, s], axis=-1)
        x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
                
        x = x.transpose(0, 1)
        input_lengths = text_lengths.cpu().numpy()
        x = x.transpose(-1, -2)
        
        for block in self.lstms:
            if isinstance(block, AdaLayerNorm):
                x = block(x.transpose(-1, -2), style).transpose(-1, -2)
                x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
                x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
            else:
                x = x.transpose(-1, -2)
                x = nn.utils.rnn.pack_padded_sequence(
                    x, input_lengths, batch_first=True, enforce_sorted=False)
                block.flatten_parameters()
                x, _ = block(x)
                x, _ = nn.utils.rnn.pad_packed_sequence(
                    x, batch_first=True)
                x = F.dropout(x, p=self.dropout, training=self.training)
                x = x.transpose(-1, -2)
                
                x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])

                x_pad[:, :, :x.shape[-1]] = x
                x = x_pad.to(x.device)
#         print('Calling Duration Encoder\n\n\n\n',x.shape, x.min(), x.max())
#         Calling Duration Encoder
#  torch.Size([1, 640, 107]) tensor(-3.0903, device='cuda:0') tensor(2.3089, device='cuda:0')
        return x.transpose(-1, -2)

    
    
    
def load_F0_models(path):
    # load F0 model

    F0_model = JDCNet(num_class=1, seq_len=192)
    print(path, 'WHAT ARE YOU TRYING TO LOAD F0 L520')
    path = path.replace('.t7', '.pth')
    params = torch.load(path, map_location='cpu')['net']
    F0_model.load_state_dict(params)
    _ = F0_model.train()
    
    return F0_model

def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
    # load ASR model
    def _load_config(path):
        with open(path) as f:
            config = yaml.safe_load(f)
        model_config = config['model_params']
        return model_config

    def _load_model(model_config, model_path):
        model = ASRCNN(**model_config)
        params = torch.load(model_path, map_location='cpu')['model']
        model.load_state_dict(params)
        return model

    asr_model_config = _load_config(ASR_MODEL_CONFIG)
    asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
    _ = asr_model.train()

    return asr_model

def build_model(args, text_aligner, pitch_extractor, bert):
    print(f'\n==============\n {args.decoder.type=}\n==============L584 models.py @ build_model()\n')
    
    from Modules.hifigan import Decoder
    decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
            resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
            upsample_rates = args.decoder.upsample_rates,
            upsample_initial_channel=args.decoder.upsample_initial_channel,
            resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
            upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) 
        
    text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
    
    predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
    
    style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
    predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
    nets = Munch(
            bert=bert,
            bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),

            predictor=predictor,
            decoder=decoder,
            text_encoder=text_encoder,

            predictor_encoder=predictor_encoder,
            style_encoder=style_encoder,

            text_aligner = text_aligner,
            pitch_extractor=pitch_extractor
       )

    return nets