Dionyssos's picture
debug special token
0a8807e
raw
history blame
7.29 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Compression models or wrapper around existing models.
Also defines the main interface that a model must follow to be usable as an audio tokenizer.
"""
from abc import ABC, abstractmethod
import logging
import math
from pathlib import Path
import typing as tp
from einops import rearrange
import numpy as np
import torch
from torch import nn
from transformers import EncodecModel as HFEncodecModel
import audiocraft.quantization as qt
logger = logging.getLogger()
class CompressionModel(ABC, nn.Module):
"""Base API for all compression models that aim at being used as audio tokenizers
with a language model.
"""
@abstractmethod
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
"""See `EncodecModel.decode`."""
...
@abstractmethod
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
...
@property
@abstractmethod
def channels(self) -> int:
...
@property
@abstractmethod
def frame_rate(self) -> float:
...
@property
@abstractmethod
def sample_rate(self) -> int:
...
@property
@abstractmethod
def cardinality(self) -> int:
...
@property
@abstractmethod
def num_codebooks(self) -> int:
...
@property
@abstractmethod
def total_codebooks(self) -> int:
...
@abstractmethod
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer."""
...
@staticmethod
def get_pretrained(
name: str, device: tp.Union[torch.device, str] = 'cpu'
) -> 'CompressionModel':
"""Instantiate a CompressionModel from a given pretrained model.
Args:
name (Path or str): name of the pretrained model. See after.
device (torch.device or str): Device on which the model is loaded.
Pretrained models:
- dac_44khz (https://github.com/descriptinc/descript-audio-codec)
- dac_24khz (same)
- facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz)
- facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz)
- your own model on Hugging Face. Export instructions to come...
"""
from . import builders, loaders
model: CompressionModel
if name in ['dac_44khz', 'dac_24khz']:
model_type = name.split('_')[1]
logger.info("Getting pretrained compression model from DAC %s", model_type)
model = DAC(model_type)
elif name in ['debug_compression_model']:
logger.info("Getting pretrained compression model for debug")
model = builders.get_debug_compression_model()
elif Path(name).exists():
# We assume here if the path exists that it is in fact an AC checkpoint
# that was exported using `audiocraft.utils.export` functions.
model = loaders.load_compression_model(name, device=device)
else:
logger.info("Getting pretrained compression model from HF %s", name)
hf_model = HFEncodecModel.from_pretrained(name)
model = HFEncodecCompressionModel(hf_model).to(device)
return model.to(device).eval()
class EncodecModel(CompressionModel):
"""Encodec model operating on the raw waveform.
Args:
encoder (nn.Module): Encoder network.
decoder (nn.Module): Decoder network.
quantizer (qt.BaseQuantizer): Quantizer network.
frame_rate (int): Frame rate for the latent representation.
sample_rate (int): Audio sample rate.
channels (int): Number of audio channels.
causal (bool): Whether to use a causal version of the model.
renormalize (bool): Whether to renormalize the audio before running the model.
"""
# we need assignment to override the property in the abstract class,
# I couldn't find a better way...
frame_rate: float = 0
sample_rate: int = 0
channels: int = 0
def __init__(self,
decoder=None,
quantizer=None,
frame_rate=None,
sample_rate=None,
channels=None,
causal=False,
renormalize=False):
super().__init__()
self.decoder = decoder
self.quantizer = quantizer
self.frame_rate = frame_rate
self.sample_rate = sample_rate
self.channels = channels
self.renormalize = renormalize
self.causal = causal
if self.causal:
# we force disabling here to avoid handling linear overlap of segments
# as supported in original EnCodec codebase.
assert not self.renormalize, 'Causal model does not support renormalize'
@property
def total_codebooks(self):
"""Total number of quantizer codebooks available."""
return self.quantizer.total_codebooks
@property
def num_codebooks(self):
"""Active number of codebooks used by the quantizer."""
return self.quantizer.num_codebooks
def set_num_codebooks(self, n: int):
"""Set the active number of codebooks used by the quantizer."""
self.quantizer.set_num_codebooks(n)
@property
def cardinality(self):
"""Cardinality of each codebook."""
return self.quantizer.bins
def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]:
scale: tp.Optional[torch.Tensor]
if self.renormalize:
mono = x.mean(dim=1, keepdim=True)
volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt()
scale = 1e-8 + volume
x = x / scale
scale = scale.view(-1, 1)
else:
scale = None
return x, scale
def postprocess(self,
x: torch.Tensor,
scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor:
if scale is not None:
assert self.renormalize
x = x * scale.view(-1, 1, 1)
return x
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None):
"""Decode the given codes to a reconstructed representation, using the scale to perform
audio denormalization if needed.
Args:
codes (torch.Tensor): Int tensor of shape [B, K, T]
scale (torch.Tensor, optional): Float tensor containing the scale value.
Returns:
out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio.
"""
emb = self.decode_latent(codes)
out = self.decoder(emb)
out = self.postprocess(out, scale)
# out contains extra padding added by the encoder and decoder
return out
def decode_latent(self, codes: torch.Tensor):
"""Decode from the discrete codes to continuous latent space."""
return self.quantizer.decode(codes)