Dionyssos's picture
fx diffusion
8cc530a
import os
import yaml
import torch
from transformers import AlbertConfig, AlbertModel
class CustomAlbert(AlbertModel):
def forward(self, *args, **kwargs):
# Call the original forward method
outputs = super().forward(*args, **kwargs)
# Only return the last_hidden_state
return outputs.last_hidden_state
def load_plbert(log_dir):
config_path = os.path.join(log_dir, "config.yml")
plbert_config = yaml.safe_load(open(config_path))
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
bert = CustomAlbert(albert_base_configuration)
files = os.listdir(log_dir)
ckpts = []
for f in os.listdir(log_dir):
if f.startswith("step_"): ckpts.append(f)
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
iters = sorted(iters)[-1]
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".pth", map_location='cpu')
state_dict = checkpoint['net']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
if name.startswith('encoder.'):
name = name[8:] # remove `encoder.`
new_state_dict[name] = v
del new_state_dict["embeddings.position_ids"]
bert.load_state_dict(new_state_dict, strict=True)
return bert