Dionyssos commited on
Commit
38f0a43
·
1 Parent(s): b71acb9

foreign lang MMS TTS

Browse files
Modules/vits/.gitignore ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DUMMY1
2
+ DUMMY2
3
+ DUMMY3
4
+ logs
5
+ __pycache__
6
+ .ipynb_checkpoints
7
+ .*.swp
8
+
9
+ build
10
+ *.c
11
+ monotonic_align/monotonic_align
Modules/vits/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jaehyeon Kim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
Modules/vits/README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
2
+
3
+ ### Jaehyeon Kim, Jungil Kong, and Juhee Son
4
+
5
+ In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
6
+
7
+ Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
8
+
9
+ Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
10
+
11
+ We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
12
+
13
+ ** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
14
+
15
+ <table style="width:100%">
16
+ <tr>
17
+ <th>VITS at training</th>
18
+ <th>VITS at inference</th>
19
+ </tr>
20
+ <tr>
21
+ <td><img src="resources/fig_1a.png" alt="VITS at training" height="400"></td>
22
+ <td><img src="resources/fig_1b.png" alt="VITS at inference" height="400"></td>
23
+ </tr>
24
+ </table>
25
+
26
+
27
+ ## Pre-requisites
28
+ 0. Python >= 3.6
29
+ 0. Clone this repository
30
+ 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
31
+ 1. You may need to install espeak first: `apt-get install espeak`
32
+ 0. Download datasets
33
+ 1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
34
+ 1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
35
+ 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
36
+ ```sh
37
+ # Cython-version Monotonoic Alignment Search
38
+ cd monotonic_align
39
+ python setup.py build_ext --inplace
40
+
41
+ # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
42
+ # python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
43
+ # python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
44
+ ```
45
+
46
+
47
+ ## Training Exmaple
48
+ ```sh
49
+ # LJ Speech
50
+ python train.py -c configs/ljs_base.json -m ljs_base
51
+
52
+ # VCTK
53
+ python train_ms.py -c configs/vctk_base.json -m vctk_base
54
+ ```
55
+
56
+
57
+ ## Inference Example
58
+ See [inference.ipynb](inference.ipynb)
Modules/vits/attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
Modules/vits/commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
Modules/vits/data_utils.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch
10
+ from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import text_to_sequence, cleaned_text_to_sequence
12
+
13
+
14
+ class TextAudioLoader(torch.utils.data.Dataset):
15
+ """
16
+ 1) loads audio, text pairs
17
+ 2) normalizes text and converts them to sequences of integers
18
+ 3) computes spectrograms from audio files.
19
+ """
20
+ def __init__(self, audiopaths_and_text, hparams):
21
+ self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
22
+ self.text_cleaners = hparams.text_cleaners
23
+ self.max_wav_value = hparams.max_wav_value
24
+ self.sampling_rate = hparams.sampling_rate
25
+ self.filter_length = hparams.filter_length
26
+ self.hop_length = hparams.hop_length
27
+ self.win_length = hparams.win_length
28
+ self.sampling_rate = hparams.sampling_rate
29
+
30
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
31
+
32
+ self.add_blank = hparams.add_blank
33
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
34
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
35
+
36
+ random.seed(1234)
37
+ random.shuffle(self.audiopaths_and_text)
38
+ self._filter()
39
+
40
+
41
+ def _filter(self):
42
+ """
43
+ Filter text & store spec lengths
44
+ """
45
+ # Store spectrogram lengths for Bucketing
46
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47
+ # spec_length = wav_length // hop_length
48
+
49
+ audiopaths_and_text_new = []
50
+ lengths = []
51
+ for audiopath, text in self.audiopaths_and_text:
52
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53
+ audiopaths_and_text_new.append([audiopath, text])
54
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
55
+ self.audiopaths_and_text = audiopaths_and_text_new
56
+ self.lengths = lengths
57
+
58
+ def get_audio_text_pair(self, audiopath_and_text):
59
+ # separate filename and text
60
+ audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
61
+ text = self.get_text(text)
62
+ spec, wav = self.get_audio(audiopath)
63
+ return (text, spec, wav)
64
+
65
+ def get_audio(self, filename):
66
+ audio, sampling_rate = load_wav_to_torch(filename)
67
+ if sampling_rate != self.sampling_rate:
68
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
69
+ sampling_rate, self.sampling_rate))
70
+ audio_norm = audio / self.max_wav_value
71
+ audio_norm = audio_norm.unsqueeze(0)
72
+ spec_filename = filename.replace(".wav", ".spec.pt")
73
+ if os.path.exists(spec_filename):
74
+ spec = torch.load(spec_filename)
75
+ else:
76
+ spec = spectrogram_torch(audio_norm, self.filter_length,
77
+ self.sampling_rate, self.hop_length, self.win_length,
78
+ center=False)
79
+ spec = torch.squeeze(spec, 0)
80
+ torch.save(spec, spec_filename)
81
+ return spec, audio_norm
82
+
83
+ def get_text(self, text):
84
+ if self.cleaned_text:
85
+ text_norm = cleaned_text_to_sequence(text)
86
+ else:
87
+ text_norm = text_to_sequence(text, self.text_cleaners)
88
+ if self.add_blank:
89
+ text_norm = commons.intersperse(text_norm, 0)
90
+ text_norm = torch.LongTensor(text_norm)
91
+ return text_norm
92
+
93
+ def __getitem__(self, index):
94
+ return self.get_audio_text_pair(self.audiopaths_and_text[index])
95
+
96
+ def __len__(self):
97
+ return len(self.audiopaths_and_text)
98
+
99
+
100
+ class TextAudioCollate():
101
+ """ Zero-pads model inputs and targets
102
+ """
103
+ def __init__(self, return_ids=False):
104
+ self.return_ids = return_ids
105
+
106
+ def __call__(self, batch):
107
+ """Collate's training batch from normalized text and aduio
108
+ PARAMS
109
+ ------
110
+ batch: [text_normalized, spec_normalized, wav_normalized]
111
+ """
112
+ # Right zero-pad all one-hot text sequences to max input length
113
+ _, ids_sorted_decreasing = torch.sort(
114
+ torch.LongTensor([x[1].size(1) for x in batch]),
115
+ dim=0, descending=True)
116
+
117
+ max_text_len = max([len(x[0]) for x in batch])
118
+ max_spec_len = max([x[1].size(1) for x in batch])
119
+ max_wav_len = max([x[2].size(1) for x in batch])
120
+
121
+ text_lengths = torch.LongTensor(len(batch))
122
+ spec_lengths = torch.LongTensor(len(batch))
123
+ wav_lengths = torch.LongTensor(len(batch))
124
+
125
+ text_padded = torch.LongTensor(len(batch), max_text_len)
126
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
127
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
128
+ text_padded.zero_()
129
+ spec_padded.zero_()
130
+ wav_padded.zero_()
131
+ for i in range(len(ids_sorted_decreasing)):
132
+ row = batch[ids_sorted_decreasing[i]]
133
+
134
+ text = row[0]
135
+ text_padded[i, :text.size(0)] = text
136
+ text_lengths[i] = text.size(0)
137
+
138
+ spec = row[1]
139
+ spec_padded[i, :, :spec.size(1)] = spec
140
+ spec_lengths[i] = spec.size(1)
141
+
142
+ wav = row[2]
143
+ wav_padded[i, :, :wav.size(1)] = wav
144
+ wav_lengths[i] = wav.size(1)
145
+
146
+ if self.return_ids:
147
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
148
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
149
+
150
+
151
+ """Multi speaker version"""
152
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
153
+ """
154
+ 1) loads audio, speaker_id, text pairs
155
+ 2) normalizes text and converts them to sequences of integers
156
+ 3) computes spectrograms from audio files.
157
+ """
158
+ def __init__(self, audiopaths_sid_text, hparams):
159
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
160
+ self.text_cleaners = hparams.text_cleaners
161
+ self.max_wav_value = hparams.max_wav_value
162
+ self.sampling_rate = hparams.sampling_rate
163
+ self.filter_length = hparams.filter_length
164
+ self.hop_length = hparams.hop_length
165
+ self.win_length = hparams.win_length
166
+ self.sampling_rate = hparams.sampling_rate
167
+
168
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
169
+
170
+ self.add_blank = hparams.add_blank
171
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
172
+ self.max_text_len = getattr(hparams, "max_text_len", 190)
173
+
174
+ random.seed(1234)
175
+ random.shuffle(self.audiopaths_sid_text)
176
+ self._filter()
177
+
178
+ def _filter(self):
179
+ """
180
+ Filter text & store spec lengths
181
+ """
182
+ # Store spectrogram lengths for Bucketing
183
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
184
+ # spec_length = wav_length // hop_length
185
+
186
+ audiopaths_sid_text_new = []
187
+ lengths = []
188
+ for audiopath, sid, text in self.audiopaths_sid_text:
189
+ if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
190
+ audiopaths_sid_text_new.append([audiopath, sid, text])
191
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
192
+ self.audiopaths_sid_text = audiopaths_sid_text_new
193
+ self.lengths = lengths
194
+
195
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
196
+ # separate filename, speaker_id and text
197
+ audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
198
+ text = self.get_text(text)
199
+ spec, wav = self.get_audio(audiopath)
200
+ sid = self.get_sid(sid)
201
+ return (text, spec, wav, sid)
202
+
203
+ def get_audio(self, filename):
204
+ audio, sampling_rate = load_wav_to_torch(filename)
205
+ if sampling_rate != self.sampling_rate:
206
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
207
+ sampling_rate, self.sampling_rate))
208
+ audio_norm = audio / self.max_wav_value
209
+ audio_norm = audio_norm.unsqueeze(0)
210
+ spec_filename = filename.replace(".wav", ".spec.pt")
211
+ if os.path.exists(spec_filename):
212
+ spec = torch.load(spec_filename)
213
+ else:
214
+ spec = spectrogram_torch(audio_norm, self.filter_length,
215
+ self.sampling_rate, self.hop_length, self.win_length,
216
+ center=False)
217
+ spec = torch.squeeze(spec, 0)
218
+ torch.save(spec, spec_filename)
219
+ return spec, audio_norm
220
+
221
+ def get_text(self, text):
222
+ if self.cleaned_text:
223
+ text_norm = cleaned_text_to_sequence(text)
224
+ else:
225
+ text_norm = text_to_sequence(text, self.text_cleaners)
226
+ if self.add_blank:
227
+ text_norm = commons.intersperse(text_norm, 0)
228
+ text_norm = torch.LongTensor(text_norm)
229
+ return text_norm
230
+
231
+ def get_sid(self, sid):
232
+ sid = torch.LongTensor([int(sid)])
233
+ return sid
234
+
235
+ def __getitem__(self, index):
236
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
237
+
238
+ def __len__(self):
239
+ return len(self.audiopaths_sid_text)
240
+
241
+
242
+ class TextAudioSpeakerCollate():
243
+ """ Zero-pads model inputs and targets
244
+ """
245
+ def __init__(self, return_ids=False):
246
+ self.return_ids = return_ids
247
+
248
+ def __call__(self, batch):
249
+ """Collate's training batch from normalized text, audio and speaker identities
250
+ PARAMS
251
+ ------
252
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
253
+ """
254
+ # Right zero-pad all one-hot text sequences to max input length
255
+ _, ids_sorted_decreasing = torch.sort(
256
+ torch.LongTensor([x[1].size(1) for x in batch]),
257
+ dim=0, descending=True)
258
+
259
+ max_text_len = max([len(x[0]) for x in batch])
260
+ max_spec_len = max([x[1].size(1) for x in batch])
261
+ max_wav_len = max([x[2].size(1) for x in batch])
262
+
263
+ text_lengths = torch.LongTensor(len(batch))
264
+ spec_lengths = torch.LongTensor(len(batch))
265
+ wav_lengths = torch.LongTensor(len(batch))
266
+ sid = torch.LongTensor(len(batch))
267
+
268
+ text_padded = torch.LongTensor(len(batch), max_text_len)
269
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
270
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
271
+ text_padded.zero_()
272
+ spec_padded.zero_()
273
+ wav_padded.zero_()
274
+ for i in range(len(ids_sorted_decreasing)):
275
+ row = batch[ids_sorted_decreasing[i]]
276
+
277
+ text = row[0]
278
+ text_padded[i, :text.size(0)] = text
279
+ text_lengths[i] = text.size(0)
280
+
281
+ spec = row[1]
282
+ spec_padded[i, :, :spec.size(1)] = spec
283
+ spec_lengths[i] = spec.size(1)
284
+
285
+ wav = row[2]
286
+ wav_padded[i, :, :wav.size(1)] = wav
287
+ wav_lengths[i] = wav.size(1)
288
+
289
+ sid[i] = row[3]
290
+
291
+ if self.return_ids:
292
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
293
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
294
+
295
+
296
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
297
+ """
298
+ Maintain similar input lengths in a batch.
299
+ Length groups are specified by boundaries.
300
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
301
+
302
+ It removes samples which are not included in the boundaries.
303
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
304
+ """
305
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
306
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
307
+ self.lengths = dataset.lengths
308
+ self.batch_size = batch_size
309
+ self.boundaries = boundaries
310
+
311
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
312
+ self.total_size = sum(self.num_samples_per_bucket)
313
+ self.num_samples = self.total_size // self.num_replicas
314
+
315
+ def _create_buckets(self):
316
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
317
+ for i in range(len(self.lengths)):
318
+ length = self.lengths[i]
319
+ idx_bucket = self._bisect(length)
320
+ if idx_bucket != -1:
321
+ buckets[idx_bucket].append(i)
322
+
323
+ for i in range(len(buckets) - 1, 0, -1):
324
+ if len(buckets[i]) == 0:
325
+ buckets.pop(i)
326
+ self.boundaries.pop(i+1)
327
+
328
+ num_samples_per_bucket = []
329
+ for i in range(len(buckets)):
330
+ len_bucket = len(buckets[i])
331
+ total_batch_size = self.num_replicas * self.batch_size
332
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
333
+ num_samples_per_bucket.append(len_bucket + rem)
334
+ return buckets, num_samples_per_bucket
335
+
336
+ def __iter__(self):
337
+ # deterministically shuffle based on epoch
338
+ g = torch.Generator()
339
+ g.manual_seed(self.epoch)
340
+
341
+ indices = []
342
+ if self.shuffle:
343
+ for bucket in self.buckets:
344
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
345
+ else:
346
+ for bucket in self.buckets:
347
+ indices.append(list(range(len(bucket))))
348
+
349
+ batches = []
350
+ for i in range(len(self.buckets)):
351
+ bucket = self.buckets[i]
352
+ len_bucket = len(bucket)
353
+ ids_bucket = indices[i]
354
+ num_samples_bucket = self.num_samples_per_bucket[i]
355
+
356
+ # add extra samples to make it evenly divisible
357
+ rem = num_samples_bucket - len_bucket
358
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
359
+
360
+ # subsample
361
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
362
+
363
+ # batching
364
+ for j in range(len(ids_bucket) // self.batch_size):
365
+ batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
366
+ batches.append(batch)
367
+
368
+ if self.shuffle:
369
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
370
+ batches = [batches[i] for i in batch_ids]
371
+ self.batches = batches
372
+
373
+ assert len(self.batches) * self.batch_size == self.num_samples
374
+ return iter(self.batches)
375
+
376
+ def _bisect(self, x, lo=0, hi=None):
377
+ if hi is None:
378
+ hi = len(self.boundaries) - 1
379
+
380
+ if hi > lo:
381
+ mid = (hi + lo) // 2
382
+ if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
383
+ return mid
384
+ elif x <= self.boundaries[mid]:
385
+ return self._bisect(x, lo, mid)
386
+ else:
387
+ return self._bisect(x, mid + 1, hi)
388
+ else:
389
+ return -1
390
+
391
+ def __len__(self):
392
+ return self.num_samples // self.batch_size
Modules/vits/losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
Modules/vits/mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
Modules/vits/models.py ADDED
@@ -0,0 +1,534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+
28
+ self.log_flow = modules.Log()
29
+ self.flows = nn.ModuleList()
30
+ self.flows.append(modules.ElementwiseAffine(2))
31
+ for i in range(n_flows):
32
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
33
+ self.flows.append(modules.Flip())
34
+
35
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
36
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
37
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
38
+ self.post_flows = nn.ModuleList()
39
+ self.post_flows.append(modules.ElementwiseAffine(2))
40
+ for i in range(4):
41
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
42
+ self.post_flows.append(modules.Flip())
43
+
44
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
45
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
46
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
47
+ if gin_channels != 0:
48
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
49
+
50
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
51
+ x = torch.detach(x)
52
+ x = self.pre(x)
53
+ if g is not None:
54
+ g = torch.detach(g)
55
+ x = x + self.cond(g)
56
+ x = self.convs(x, x_mask)
57
+ x = self.proj(x) * x_mask
58
+
59
+ if not reverse:
60
+ flows = self.flows
61
+ assert w is not None
62
+
63
+ logdet_tot_q = 0
64
+ h_w = self.post_pre(w)
65
+ h_w = self.post_convs(h_w, x_mask)
66
+ h_w = self.post_proj(h_w) * x_mask
67
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
68
+ z_q = e_q
69
+ for flow in self.post_flows:
70
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
71
+ logdet_tot_q += logdet_q
72
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
73
+ u = torch.sigmoid(z_u) * x_mask
74
+ z0 = (w - u) * x_mask
75
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
76
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
77
+
78
+ logdet_tot = 0
79
+ z0, logdet = self.log_flow(z0, x_mask)
80
+ logdet_tot += logdet
81
+ z = torch.cat([z0, z1], 1)
82
+ for flow in flows:
83
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
84
+ logdet_tot = logdet_tot + logdet
85
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
86
+ return nll + logq # [b]
87
+ else:
88
+ flows = list(reversed(self.flows))
89
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
90
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
91
+ for flow in flows:
92
+ z = flow(z, x_mask, g=x, reverse=reverse)
93
+ z0, z1 = torch.split(z, [1, 1], 1)
94
+ logw = z0
95
+ return logw
96
+
97
+
98
+ class DurationPredictor(nn.Module):
99
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
100
+ super().__init__()
101
+
102
+ self.in_channels = in_channels
103
+ self.filter_channels = filter_channels
104
+ self.kernel_size = kernel_size
105
+ self.p_dropout = p_dropout
106
+ self.gin_channels = gin_channels
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
110
+ self.norm_1 = modules.LayerNorm(filter_channels)
111
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
112
+ self.norm_2 = modules.LayerNorm(filter_channels)
113
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
114
+
115
+ if gin_channels != 0:
116
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ x = torch.detach(x)
120
+ if g is not None:
121
+ g = torch.detach(g)
122
+ x = x + self.cond(g)
123
+ x = self.conv_1(x * x_mask)
124
+ x = torch.relu(x)
125
+ x = self.norm_1(x)
126
+ x = self.drop(x)
127
+ x = self.conv_2(x * x_mask)
128
+ x = torch.relu(x)
129
+ x = self.norm_2(x)
130
+ x = self.drop(x)
131
+ x = self.proj(x * x_mask)
132
+ return x * x_mask
133
+
134
+
135
+ class TextEncoder(nn.Module):
136
+ def __init__(self,
137
+ n_vocab,
138
+ out_channels,
139
+ hidden_channels,
140
+ filter_channels,
141
+ n_heads,
142
+ n_layers,
143
+ kernel_size,
144
+ p_dropout):
145
+ super().__init__()
146
+ self.n_vocab = n_vocab
147
+ self.out_channels = out_channels
148
+ self.hidden_channels = hidden_channels
149
+ self.filter_channels = filter_channels
150
+ self.n_heads = n_heads
151
+ self.n_layers = n_layers
152
+ self.kernel_size = kernel_size
153
+ self.p_dropout = p_dropout
154
+
155
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
156
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
+
158
+ self.encoder = attentions.Encoder(
159
+ hidden_channels,
160
+ filter_channels,
161
+ n_heads,
162
+ n_layers,
163
+ kernel_size,
164
+ p_dropout)
165
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
+
167
+ def forward(self, x, x_lengths):
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class ResidualCouplingBlock(nn.Module):
180
+ def __init__(self,
181
+ channels,
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ n_flows=4,
187
+ gin_channels=0):
188
+ super().__init__()
189
+ self.channels = channels
190
+ self.hidden_channels = hidden_channels
191
+ self.kernel_size = kernel_size
192
+ self.dilation_rate = dilation_rate
193
+ self.n_layers = n_layers
194
+ self.n_flows = n_flows
195
+ self.gin_channels = gin_channels
196
+
197
+ self.flows = nn.ModuleList()
198
+ for i in range(n_flows):
199
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
200
+ self.flows.append(modules.Flip())
201
+
202
+ def forward(self, x, x_mask, g=None, reverse=False):
203
+ if not reverse:
204
+ for flow in self.flows:
205
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
206
+ else:
207
+ for flow in reversed(self.flows):
208
+ x = flow(x, x_mask, g=g, reverse=reverse)
209
+ return x
210
+
211
+
212
+ class PosteriorEncoder(nn.Module):
213
+ def __init__(self,
214
+ in_channels,
215
+ out_channels,
216
+ hidden_channels,
217
+ kernel_size,
218
+ dilation_rate,
219
+ n_layers,
220
+ gin_channels=0):
221
+ super().__init__()
222
+ self.in_channels = in_channels
223
+ self.out_channels = out_channels
224
+ self.hidden_channels = hidden_channels
225
+ self.kernel_size = kernel_size
226
+ self.dilation_rate = dilation_rate
227
+ self.n_layers = n_layers
228
+ self.gin_channels = gin_channels
229
+
230
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
231
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
232
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
233
+
234
+ def forward(self, x, x_lengths, g=None):
235
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
236
+ x = self.pre(x) * x_mask
237
+ x = self.enc(x, x_mask, g=g)
238
+ stats = self.proj(x) * x_mask
239
+ m, logs = torch.split(stats, self.out_channels, dim=1)
240
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
241
+ return z, m, logs, x_mask
242
+
243
+
244
+ class Generator(torch.nn.Module):
245
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
246
+ super(Generator, self).__init__()
247
+ self.num_kernels = len(resblock_kernel_sizes)
248
+ self.num_upsamples = len(upsample_rates)
249
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
250
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
251
+
252
+ self.ups = nn.ModuleList()
253
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
254
+ self.ups.append(weight_norm(
255
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
256
+ k, u, padding=(k-u)//2)))
257
+
258
+ self.resblocks = nn.ModuleList()
259
+ for i in range(len(self.ups)):
260
+ ch = upsample_initial_channel//(2**(i+1))
261
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
262
+ self.resblocks.append(resblock(ch, k, d))
263
+
264
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
265
+ self.ups.apply(init_weights)
266
+
267
+ if gin_channels != 0:
268
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
269
+
270
+ def forward(self, x, g=None):
271
+ x = self.conv_pre(x)
272
+ if g is not None:
273
+ x = x + self.cond(g)
274
+
275
+ for i in range(self.num_upsamples):
276
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
277
+ x = self.ups[i](x)
278
+ xs = None
279
+ for j in range(self.num_kernels):
280
+ if xs is None:
281
+ xs = self.resblocks[i*self.num_kernels+j](x)
282
+ else:
283
+ xs += self.resblocks[i*self.num_kernels+j](x)
284
+ x = xs / self.num_kernels
285
+ x = F.leaky_relu(x)
286
+ x = self.conv_post(x)
287
+ x = torch.tanh(x)
288
+
289
+ return x
290
+
291
+ def remove_weight_norm(self):
292
+ print('Removing weight norm...')
293
+ for l in self.ups:
294
+ remove_weight_norm(l)
295
+ for l in self.resblocks:
296
+ l.remove_weight_norm()
297
+
298
+
299
+ class DiscriminatorP(torch.nn.Module):
300
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
301
+ super(DiscriminatorP, self).__init__()
302
+ self.period = period
303
+ self.use_spectral_norm = use_spectral_norm
304
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
305
+ self.convs = nn.ModuleList([
306
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
311
+ ])
312
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
313
+
314
+ def forward(self, x):
315
+ fmap = []
316
+
317
+ # 1d to 2d
318
+ b, c, t = x.shape
319
+ if t % self.period != 0: # pad first
320
+ n_pad = self.period - (t % self.period)
321
+ x = F.pad(x, (0, n_pad), "reflect")
322
+ t = t + n_pad
323
+ x = x.view(b, c, t // self.period, self.period)
324
+
325
+ for l in self.convs:
326
+ x = l(x)
327
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
328
+ fmap.append(x)
329
+ x = self.conv_post(x)
330
+ fmap.append(x)
331
+ x = torch.flatten(x, 1, -1)
332
+
333
+ return x, fmap
334
+
335
+
336
+ class DiscriminatorS(torch.nn.Module):
337
+ def __init__(self, use_spectral_norm=False):
338
+ super(DiscriminatorS, self).__init__()
339
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
340
+ self.convs = nn.ModuleList([
341
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
342
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
343
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
344
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
345
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
346
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
347
+ ])
348
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
349
+
350
+ def forward(self, x):
351
+ fmap = []
352
+
353
+ for l in self.convs:
354
+ x = l(x)
355
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
356
+ fmap.append(x)
357
+ x = self.conv_post(x)
358
+ fmap.append(x)
359
+ x = torch.flatten(x, 1, -1)
360
+
361
+ return x, fmap
362
+
363
+
364
+ class MultiPeriodDiscriminator(torch.nn.Module):
365
+ def __init__(self, use_spectral_norm=False):
366
+ super(MultiPeriodDiscriminator, self).__init__()
367
+ periods = [2,3,5,7,11]
368
+
369
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
370
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
371
+ self.discriminators = nn.ModuleList(discs)
372
+
373
+ def forward(self, y, y_hat):
374
+ y_d_rs = []
375
+ y_d_gs = []
376
+ fmap_rs = []
377
+ fmap_gs = []
378
+ for i, d in enumerate(self.discriminators):
379
+ y_d_r, fmap_r = d(y)
380
+ y_d_g, fmap_g = d(y_hat)
381
+ y_d_rs.append(y_d_r)
382
+ y_d_gs.append(y_d_g)
383
+ fmap_rs.append(fmap_r)
384
+ fmap_gs.append(fmap_g)
385
+
386
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
387
+
388
+
389
+
390
+ class SynthesizerTrn(nn.Module):
391
+ """
392
+ Synthesizer for Training
393
+ """
394
+
395
+ def __init__(self,
396
+ n_vocab,
397
+ spec_channels,
398
+ segment_size,
399
+ inter_channels,
400
+ hidden_channels,
401
+ filter_channels,
402
+ n_heads,
403
+ n_layers,
404
+ kernel_size,
405
+ p_dropout,
406
+ resblock,
407
+ resblock_kernel_sizes,
408
+ resblock_dilation_sizes,
409
+ upsample_rates,
410
+ upsample_initial_channel,
411
+ upsample_kernel_sizes,
412
+ n_speakers=0,
413
+ gin_channels=0,
414
+ use_sdp=True,
415
+ **kwargs):
416
+
417
+ super().__init__()
418
+ self.n_vocab = n_vocab
419
+ self.spec_channels = spec_channels
420
+ self.inter_channels = inter_channels
421
+ self.hidden_channels = hidden_channels
422
+ self.filter_channels = filter_channels
423
+ self.n_heads = n_heads
424
+ self.n_layers = n_layers
425
+ self.kernel_size = kernel_size
426
+ self.p_dropout = p_dropout
427
+ self.resblock = resblock
428
+ self.resblock_kernel_sizes = resblock_kernel_sizes
429
+ self.resblock_dilation_sizes = resblock_dilation_sizes
430
+ self.upsample_rates = upsample_rates
431
+ self.upsample_initial_channel = upsample_initial_channel
432
+ self.upsample_kernel_sizes = upsample_kernel_sizes
433
+ self.segment_size = segment_size
434
+ self.n_speakers = n_speakers
435
+ self.gin_channels = gin_channels
436
+
437
+ self.use_sdp = use_sdp
438
+
439
+ self.enc_p = TextEncoder(n_vocab,
440
+ inter_channels,
441
+ hidden_channels,
442
+ filter_channels,
443
+ n_heads,
444
+ n_layers,
445
+ kernel_size,
446
+ p_dropout)
447
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
448
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
449
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
450
+
451
+ if use_sdp:
452
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
453
+ else:
454
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
455
+
456
+ if n_speakers > 1:
457
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
458
+
459
+ def forward(self, x, x_lengths, y, y_lengths, sid=None):
460
+
461
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
462
+ if self.n_speakers > 0:
463
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
464
+ else:
465
+ g = None
466
+
467
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
468
+ z_p = self.flow(z, y_mask, g=g)
469
+
470
+ with torch.no_grad():
471
+ # negative cross-entropy
472
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
473
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
474
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
475
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
476
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
477
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
478
+
479
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
480
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
481
+
482
+ w = attn.sum(2)
483
+ if self.use_sdp:
484
+ l_length = self.dp(x, x_mask, w, g=g)
485
+ l_length = l_length / torch.sum(x_mask)
486
+ else:
487
+ logw_ = torch.log(w + 1e-6) * x_mask
488
+ logw = self.dp(x, x_mask, g=g)
489
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
490
+
491
+ # expand prior
492
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
493
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
494
+
495
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
496
+ o = self.dec(z_slice, g=g)
497
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
498
+
499
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
500
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
501
+ if self.n_speakers > 0:
502
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
503
+ else:
504
+ g = None
505
+
506
+ if self.use_sdp:
507
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
508
+ else:
509
+ logw = self.dp(x, x_mask, g=g)
510
+ w = torch.exp(logw) * x_mask * length_scale
511
+ w_ceil = torch.ceil(w)
512
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
513
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
514
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
515
+ attn = commons.generate_path(w_ceil, attn_mask)
516
+
517
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
518
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
519
+
520
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
521
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
522
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
523
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
524
+
525
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
526
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
527
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
528
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
529
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
530
+ z_p = self.flow(z, y_mask, g=g_src)
531
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
532
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
533
+ return o_hat, y_mask, (z, z_p, z_hat)
534
+
Modules/vits/modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
Modules/vits/monotonic_align/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from .monotonic_align.core import maximum_path_c
4
+
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ """ Cython optimized version.
8
+ neg_cent: [b, t_t, t_s]
9
+ mask: [b, t_t, t_s]
10
+ """
11
+ device = neg_cent.device
12
+ dtype = neg_cent.dtype
13
+ neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
+ path = np.zeros(neg_cent.shape, dtype=np.int32)
15
+
16
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
Modules/vits/monotonic_align/core.pyx ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cimport cython
2
+ from cython.parallel import prange
3
+
4
+
5
+ @cython.boundscheck(False)
6
+ @cython.wraparound(False)
7
+ cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
+ cdef int x
9
+ cdef int y
10
+ cdef float v_prev
11
+ cdef float v_cur
12
+ cdef float tmp
13
+ cdef int index = t_x - 1
14
+
15
+ for y in range(t_y):
16
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
+ if x == y:
18
+ v_cur = max_neg_val
19
+ else:
20
+ v_cur = value[y-1, x]
21
+ if x == 0:
22
+ if y == 0:
23
+ v_prev = 0.
24
+ else:
25
+ v_prev = max_neg_val
26
+ else:
27
+ v_prev = value[y-1, x-1]
28
+ value[y, x] += max(v_prev, v_cur)
29
+
30
+ for y in range(t_y - 1, -1, -1):
31
+ path[y, index] = 1
32
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
+ index = index - 1
34
+
35
+
36
+ @cython.boundscheck(False)
37
+ @cython.wraparound(False)
38
+ cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
+ cdef int b = paths.shape[0]
40
+ cdef int i
41
+ for i in prange(b, nogil=True):
42
+ maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
Modules/vits/monotonic_align/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.core import setup
2
+ from Cython.Build import cythonize
3
+ import numpy
4
+
5
+ setup(
6
+ name = 'monotonic_align',
7
+ ext_modules = cythonize("core.pyx"),
8
+ include_dirs=[numpy.get_include()]
9
+ )
Modules/vits/preprocess.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import text
3
+ from utils import load_filepaths_and_text
4
+
5
+ if __name__ == '__main__':
6
+ parser = argparse.ArgumentParser()
7
+ parser.add_argument("--out_extension", default="cleaned")
8
+ parser.add_argument("--text_index", default=1, type=int)
9
+ parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10
+ parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11
+
12
+ args = parser.parse_args()
13
+
14
+
15
+ for filelist in args.filelists:
16
+ print("START:", filelist)
17
+ filepaths_and_text = load_filepaths_and_text(filelist)
18
+ for i in range(len(filepaths_and_text)):
19
+ original_text = filepaths_and_text[i][args.text_index]
20
+ cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
+ filepaths_and_text[i][args.text_index] = cleaned_text
22
+
23
+ new_filelist = filelist + "." + args.out_extension
24
+ with open(new_filelist, "w", encoding="utf-8") as f:
25
+ f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
Modules/vits/text/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2017 Keith Ito
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
+ THE SOFTWARE.
Modules/vits/text/__init__.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+ from text.symbols import symbols
4
+
5
+
6
+ # Mappings from symbol to numeric ID and vice versa:
7
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
+ _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
+
10
+
11
+ def text_to_sequence(text, cleaner_names):
12
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
+ Args:
14
+ text: string to convert to a sequence
15
+ cleaner_names: names of the cleaner functions to run the text through
16
+ Returns:
17
+ List of integers corresponding to the symbols in the text
18
+ '''
19
+ sequence = []
20
+
21
+ clean_text = _clean_text(text, cleaner_names)
22
+ for symbol in clean_text:
23
+ symbol_id = _symbol_to_id[symbol]
24
+ sequence += [symbol_id]
25
+ return sequence
26
+
27
+
28
+ def cleaned_text_to_sequence(cleaned_text):
29
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
30
+ Args:
31
+ text: string to convert to a sequence
32
+ Returns:
33
+ List of integers corresponding to the symbols in the text
34
+ '''
35
+ sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
36
+ return sequence
37
+
38
+
39
+ def sequence_to_text(sequence):
40
+ '''Converts a sequence of IDs back to a string'''
41
+ result = ''
42
+ for symbol_id in sequence:
43
+ s = _id_to_symbol[symbol_id]
44
+ result += s
45
+ return result
46
+
47
+
48
+ def _clean_text(text, cleaner_names):
49
+ for name in cleaner_names:
50
+ cleaner = getattr(cleaners, name)
51
+ if not cleaner:
52
+ raise Exception('Unknown cleaner: %s' % name)
53
+ text = cleaner(text)
54
+ return text
Modules/vits/text/cleaners.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Cleaners are transformations that run over the input text at both training and eval time.
5
+
6
+ Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
+ hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
+ 1. "english_cleaners" for English text
9
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
+ the symbols in symbols.py to match your data).
13
+ '''
14
+
15
+ import re
16
+ from unidecode import unidecode
17
+ from phonemizer import phonemize
18
+
19
+
20
+ # Regular expression matching whitespace:
21
+ _whitespace_re = re.compile(r'\s+')
22
+
23
+ # List of (regular expression, replacement) pairs for abbreviations:
24
+ _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25
+ ('mrs', 'misess'),
26
+ ('mr', 'mister'),
27
+ ('dr', 'doctor'),
28
+ ('st', 'saint'),
29
+ ('co', 'company'),
30
+ ('jr', 'junior'),
31
+ ('maj', 'major'),
32
+ ('gen', 'general'),
33
+ ('drs', 'doctors'),
34
+ ('rev', 'reverend'),
35
+ ('lt', 'lieutenant'),
36
+ ('hon', 'honorable'),
37
+ ('sgt', 'sergeant'),
38
+ ('capt', 'captain'),
39
+ ('esq', 'esquire'),
40
+ ('ltd', 'limited'),
41
+ ('col', 'colonel'),
42
+ ('ft', 'fort'),
43
+ ]]
44
+
45
+
46
+ def expand_abbreviations(text):
47
+ for regex, replacement in _abbreviations:
48
+ text = re.sub(regex, replacement, text)
49
+ return text
50
+
51
+
52
+ def expand_numbers(text):
53
+ return normalize_numbers(text)
54
+
55
+
56
+ def lowercase(text):
57
+ return text.lower()
58
+
59
+
60
+ def collapse_whitespace(text):
61
+ return re.sub(_whitespace_re, ' ', text)
62
+
63
+
64
+ def convert_to_ascii(text):
65
+ return unidecode(text)
66
+
67
+
68
+ def basic_cleaners(text):
69
+ '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70
+ text = lowercase(text)
71
+ text = collapse_whitespace(text)
72
+ return text
73
+
74
+
75
+ def transliteration_cleaners(text):
76
+ '''Pipeline for non-English text that transliterates to ASCII.'''
77
+ text = convert_to_ascii(text)
78
+ text = lowercase(text)
79
+ text = collapse_whitespace(text)
80
+ return text
81
+
82
+
83
+ def english_cleaners(text):
84
+ '''Pipeline for English text, including abbreviation expansion.'''
85
+ text = convert_to_ascii(text)
86
+ text = lowercase(text)
87
+ text = expand_abbreviations(text)
88
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
89
+ phonemes = collapse_whitespace(phonemes)
90
+ return phonemes
91
+
92
+
93
+ def english_cleaners2(text):
94
+ '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
95
+ text = convert_to_ascii(text)
96
+ text = lowercase(text)
97
+ text = expand_abbreviations(text)
98
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
99
+ phonemes = collapse_whitespace(phonemes)
100
+ return phonemes
Modules/vits/text/symbols.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Defines the set of symbols used in text input to the model.
5
+ '''
6
+ _pad = '_'
7
+ _punctuation = ';:,.!?¡¿—…"«»“” '
8
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10
+
11
+
12
+ # Export all symbols:
13
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14
+
15
+ # Special symbol ids
16
+ SPACE_ID = symbols.index(" ")
Modules/vits/transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
Modules/vits/utils.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+
12
+ MATPLOTLIB_FLAG = False
13
+
14
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15
+ logger = logging
16
+
17
+
18
+ def load_checkpoint(checkpoint_path, model, optimizer=None):
19
+ assert os.path.isfile(checkpoint_path)
20
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21
+ iteration = checkpoint_dict['iteration']
22
+ learning_rate = checkpoint_dict['learning_rate']
23
+ if optimizer is not None:
24
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
25
+ saved_state_dict = checkpoint_dict['model']
26
+ if hasattr(model, 'module'):
27
+ state_dict = model.module.state_dict()
28
+ else:
29
+ state_dict = model.state_dict()
30
+ new_state_dict= {}
31
+ for k, v in state_dict.items():
32
+ try:
33
+ new_state_dict[k] = saved_state_dict[k]
34
+ except:
35
+ logger.info("%s is not in the checkpoint" % k)
36
+ new_state_dict[k] = v
37
+ if hasattr(model, 'module'):
38
+ model.module.load_state_dict(new_state_dict)
39
+ else:
40
+ model.load_state_dict(new_state_dict)
41
+ logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42
+ checkpoint_path, iteration))
43
+ return model, optimizer, learning_rate, iteration
44
+
45
+
46
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
48
+ iteration, checkpoint_path))
49
+ if hasattr(model, 'module'):
50
+ state_dict = model.module.state_dict()
51
+ else:
52
+ state_dict = model.state_dict()
53
+ torch.save({'model': state_dict,
54
+ 'iteration': iteration,
55
+ 'optimizer': optimizer.state_dict(),
56
+ 'learning_rate': learning_rate}, checkpoint_path)
57
+
58
+
59
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60
+ for k, v in scalars.items():
61
+ writer.add_scalar(k, v, global_step)
62
+ for k, v in histograms.items():
63
+ writer.add_histogram(k, v, global_step)
64
+ for k, v in images.items():
65
+ writer.add_image(k, v, global_step, dataformats='HWC')
66
+ for k, v in audios.items():
67
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
68
+
69
+
70
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71
+ f_list = glob.glob(os.path.join(dir_path, regex))
72
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73
+ x = f_list[-1]
74
+ print(x)
75
+ return x
76
+
77
+
78
+ def plot_spectrogram_to_numpy(spectrogram):
79
+ global MATPLOTLIB_FLAG
80
+ if not MATPLOTLIB_FLAG:
81
+ import matplotlib
82
+ matplotlib.use("Agg")
83
+ MATPLOTLIB_FLAG = True
84
+ mpl_logger = logging.getLogger('matplotlib')
85
+ mpl_logger.setLevel(logging.WARNING)
86
+ import matplotlib.pylab as plt
87
+ import numpy as np
88
+
89
+ fig, ax = plt.subplots(figsize=(10,2))
90
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91
+ interpolation='none')
92
+ plt.colorbar(im, ax=ax)
93
+ plt.xlabel("Frames")
94
+ plt.ylabel("Channels")
95
+ plt.tight_layout()
96
+
97
+ fig.canvas.draw()
98
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100
+ plt.close()
101
+ return data
102
+
103
+
104
+ def plot_alignment_to_numpy(alignment, info=None):
105
+ global MATPLOTLIB_FLAG
106
+ if not MATPLOTLIB_FLAG:
107
+ import matplotlib
108
+ matplotlib.use("Agg")
109
+ MATPLOTLIB_FLAG = True
110
+ mpl_logger = logging.getLogger('matplotlib')
111
+ mpl_logger.setLevel(logging.WARNING)
112
+ import matplotlib.pylab as plt
113
+ import numpy as np
114
+
115
+ fig, ax = plt.subplots(figsize=(6, 4))
116
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117
+ interpolation='none')
118
+ fig.colorbar(im, ax=ax)
119
+ xlabel = 'Decoder timestep'
120
+ if info is not None:
121
+ xlabel += '\n\n' + info
122
+ plt.xlabel(xlabel)
123
+ plt.ylabel('Encoder timestep')
124
+ plt.tight_layout()
125
+
126
+ fig.canvas.draw()
127
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129
+ plt.close()
130
+ return data
131
+
132
+
133
+ def load_wav_to_torch(full_path):
134
+ sampling_rate, data = read(full_path)
135
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136
+
137
+
138
+ def load_filepaths_and_text(filename, split="|"):
139
+ with open(filename, encoding='utf-8') as f:
140
+ filepaths_and_text = [line.strip().split(split) for line in f]
141
+ return filepaths_and_text
142
+
143
+
144
+ def get_hparams(init=True):
145
+ parser = argparse.ArgumentParser()
146
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
147
+ help='JSON file for configuration')
148
+ parser.add_argument('-m', '--model', type=str, required=True,
149
+ help='Model name')
150
+
151
+ args = parser.parse_args()
152
+ model_dir = os.path.join("./logs", args.model)
153
+
154
+ if not os.path.exists(model_dir):
155
+ os.makedirs(model_dir)
156
+
157
+ config_path = args.config
158
+ config_save_path = os.path.join(model_dir, "config.json")
159
+ if init:
160
+ with open(config_path, "r") as f:
161
+ data = f.read()
162
+ with open(config_save_path, "w") as f:
163
+ f.write(data)
164
+ else:
165
+ with open(config_save_path, "r") as f:
166
+ data = f.read()
167
+ config = json.loads(data)
168
+
169
+ hparams = HParams(**config)
170
+ hparams.model_dir = model_dir
171
+ return hparams
172
+
173
+
174
+ def get_hparams_from_dir(model_dir):
175
+ config_save_path = os.path.join(model_dir, "config.json")
176
+ with open(config_save_path, "r") as f:
177
+ data = f.read()
178
+ config = json.loads(data)
179
+
180
+ hparams =HParams(**config)
181
+ hparams.model_dir = model_dir
182
+ return hparams
183
+
184
+
185
+ def get_hparams_from_file(config_path):
186
+ with open(config_path, "r") as f:
187
+ data = f.read()
188
+ config = json.loads(data)
189
+
190
+ hparams =HParams(**config)
191
+ return hparams
192
+
193
+
194
+ def check_git_hash(model_dir):
195
+ source_dir = os.path.dirname(os.path.realpath(__file__))
196
+ if not os.path.exists(os.path.join(source_dir, ".git")):
197
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
198
+ source_dir
199
+ ))
200
+ return
201
+
202
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
203
+
204
+ path = os.path.join(model_dir, "githash")
205
+ if os.path.exists(path):
206
+ saved_hash = open(path).read()
207
+ if saved_hash != cur_hash:
208
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
209
+ saved_hash[:8], cur_hash[:8]))
210
+ else:
211
+ open(path, "w").write(cur_hash)
212
+
213
+
214
+ def get_logger(model_dir, filename="train.log"):
215
+ global logger
216
+ logger = logging.getLogger(os.path.basename(model_dir))
217
+ logger.setLevel(logging.DEBUG)
218
+
219
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
220
+ if not os.path.exists(model_dir):
221
+ os.makedirs(model_dir)
222
+ h = logging.FileHandler(os.path.join(model_dir, filename))
223
+ h.setLevel(logging.DEBUG)
224
+ h.setFormatter(formatter)
225
+ logger.addHandler(h)
226
+ return logger
227
+
228
+
229
+ class HParams():
230
+ def __init__(self, **kwargs):
231
+ for k, v in kwargs.items():
232
+ if type(v) == dict:
233
+ v = HParams(**v)
234
+ self[k] = v
235
+
236
+ def keys(self):
237
+ return self.__dict__.keys()
238
+
239
+ def items(self):
240
+ return self.__dict__.items()
241
+
242
+ def values(self):
243
+ return self.__dict__.values()
244
+
245
+ def __len__(self):
246
+ return len(self.__dict__)
247
+
248
+ def __getitem__(self, key):
249
+ return getattr(self, key)
250
+
251
+ def __setitem__(self, key, value):
252
+ return setattr(self, key, value)
253
+
254
+ def __contains__(self, key):
255
+ return key in self.__dict__
256
+
257
+ def __repr__(self):
258
+ return self.__dict__.__repr__()
Utils/Utils2/ASR/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Utils/Utils2/ASR/config.yml DELETED
@@ -1,29 +0,0 @@
1
- log_dir: "logs/20201006"
2
- save_freq: 5
3
- device: "cuda"
4
- epochs: 180
5
- batch_size: 64
6
- pretrained_model: ""
7
- train_data: "ASRDataset/train_list.txt"
8
- val_data: "ASRDataset/val_list.txt"
9
-
10
- dataset_params:
11
- data_augmentation: false
12
-
13
- preprocess_parasm:
14
- sr: 24000
15
- spect_params:
16
- n_fft: 2048
17
- win_length: 1200
18
- hop_length: 300
19
- mel_params:
20
- n_mels: 80
21
-
22
- model_params:
23
- input_dim: 80
24
- hidden_dim: 256
25
- n_token: 178
26
- token_embedding_dim: 512
27
-
28
- optimizer_params:
29
- lr: 0.0005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/ASR/epoch_00080.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
3
- size 94552811
 
 
 
 
Utils/Utils2/ASR/layers.py DELETED
@@ -1,354 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from typing import Optional, Any
5
- from torch import Tensor
6
- import torch.nn.functional as F
7
- import torchaudio
8
- import torchaudio.functional as audio_F
9
-
10
- import random
11
- random.seed(0)
12
-
13
-
14
- def _get_activation_fn(activ):
15
- if activ == 'relu':
16
- return nn.ReLU()
17
- elif activ == 'lrelu':
18
- return nn.LeakyReLU(0.2)
19
- elif activ == 'swish':
20
- return lambda x: x*torch.sigmoid(x)
21
- else:
22
- raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
23
-
24
- class LinearNorm(torch.nn.Module):
25
- def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
26
- super(LinearNorm, self).__init__()
27
- self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
28
-
29
- torch.nn.init.xavier_uniform_(
30
- self.linear_layer.weight,
31
- gain=torch.nn.init.calculate_gain(w_init_gain))
32
-
33
- def forward(self, x):
34
- return self.linear_layer(x)
35
-
36
-
37
- class ConvNorm(torch.nn.Module):
38
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
39
- padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
40
- super(ConvNorm, self).__init__()
41
- if padding is None:
42
- assert(kernel_size % 2 == 1)
43
- padding = int(dilation * (kernel_size - 1) / 2)
44
-
45
- self.conv = torch.nn.Conv1d(in_channels, out_channels,
46
- kernel_size=kernel_size, stride=stride,
47
- padding=padding, dilation=dilation,
48
- bias=bias)
49
-
50
- torch.nn.init.xavier_uniform_(
51
- self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
52
-
53
- def forward(self, signal):
54
- conv_signal = self.conv(signal)
55
- return conv_signal
56
-
57
- class CausualConv(nn.Module):
58
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
59
- super(CausualConv, self).__init__()
60
- if padding is None:
61
- assert(kernel_size % 2 == 1)
62
- padding = int(dilation * (kernel_size - 1) / 2) * 2
63
- else:
64
- self.padding = padding * 2
65
- self.conv = nn.Conv1d(in_channels, out_channels,
66
- kernel_size=kernel_size, stride=stride,
67
- padding=self.padding,
68
- dilation=dilation,
69
- bias=bias)
70
-
71
- torch.nn.init.xavier_uniform_(
72
- self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
73
-
74
- def forward(self, x):
75
- x = self.conv(x)
76
- x = x[:, :, :-self.padding]
77
- return x
78
-
79
- class CausualBlock(nn.Module):
80
- def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
81
- super(CausualBlock, self).__init__()
82
- self.blocks = nn.ModuleList([
83
- self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
84
- for i in range(n_conv)])
85
-
86
- def forward(self, x):
87
- for block in self.blocks:
88
- res = x
89
- x = block(x)
90
- x += res
91
- return x
92
-
93
- def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
94
- layers = [
95
- CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
96
- _get_activation_fn(activ),
97
- nn.BatchNorm1d(hidden_dim),
98
- nn.Dropout(p=dropout_p),
99
- CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
100
- _get_activation_fn(activ),
101
- nn.Dropout(p=dropout_p)
102
- ]
103
- return nn.Sequential(*layers)
104
-
105
- class ConvBlock(nn.Module):
106
- def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
107
- super().__init__()
108
- self._n_groups = 8
109
- self.blocks = nn.ModuleList([
110
- self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
111
- for i in range(n_conv)])
112
-
113
-
114
- def forward(self, x):
115
- for block in self.blocks:
116
- res = x
117
- x = block(x)
118
- x += res
119
- return x
120
-
121
- def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
122
- layers = [
123
- ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
124
- _get_activation_fn(activ),
125
- nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
126
- nn.Dropout(p=dropout_p),
127
- ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
128
- _get_activation_fn(activ),
129
- nn.Dropout(p=dropout_p)
130
- ]
131
- return nn.Sequential(*layers)
132
-
133
- class LocationLayer(nn.Module):
134
- def __init__(self, attention_n_filters, attention_kernel_size,
135
- attention_dim):
136
- super(LocationLayer, self).__init__()
137
- padding = int((attention_kernel_size - 1) / 2)
138
- self.location_conv = ConvNorm(2, attention_n_filters,
139
- kernel_size=attention_kernel_size,
140
- padding=padding, bias=False, stride=1,
141
- dilation=1)
142
- self.location_dense = LinearNorm(attention_n_filters, attention_dim,
143
- bias=False, w_init_gain='tanh')
144
-
145
- def forward(self, attention_weights_cat):
146
- processed_attention = self.location_conv(attention_weights_cat)
147
- processed_attention = processed_attention.transpose(1, 2)
148
- processed_attention = self.location_dense(processed_attention)
149
- return processed_attention
150
-
151
-
152
- class Attention(nn.Module):
153
- def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
154
- attention_location_n_filters, attention_location_kernel_size):
155
- super(Attention, self).__init__()
156
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
157
- bias=False, w_init_gain='tanh')
158
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
159
- w_init_gain='tanh')
160
- self.v = LinearNorm(attention_dim, 1, bias=False)
161
- self.location_layer = LocationLayer(attention_location_n_filters,
162
- attention_location_kernel_size,
163
- attention_dim)
164
- self.score_mask_value = -float("inf")
165
-
166
- def get_alignment_energies(self, query, processed_memory,
167
- attention_weights_cat):
168
- """
169
- PARAMS
170
- ------
171
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
172
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
173
- attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
174
- RETURNS
175
- -------
176
- alignment (batch, max_time)
177
- """
178
-
179
- processed_query = self.query_layer(query.unsqueeze(1))
180
- processed_attention_weights = self.location_layer(attention_weights_cat)
181
- energies = self.v(torch.tanh(
182
- processed_query + processed_attention_weights + processed_memory))
183
-
184
- energies = energies.squeeze(-1)
185
- return energies
186
-
187
- def forward(self, attention_hidden_state, memory, processed_memory,
188
- attention_weights_cat, mask):
189
- """
190
- PARAMS
191
- ------
192
- attention_hidden_state: attention rnn last output
193
- memory: encoder outputs
194
- processed_memory: processed encoder outputs
195
- attention_weights_cat: previous and cummulative attention weights
196
- mask: binary mask for padded data
197
- """
198
- alignment = self.get_alignment_energies(
199
- attention_hidden_state, processed_memory, attention_weights_cat)
200
-
201
- if mask is not None:
202
- alignment.data.masked_fill_(mask, self.score_mask_value)
203
-
204
- attention_weights = F.softmax(alignment, dim=1)
205
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
206
- attention_context = attention_context.squeeze(1)
207
-
208
- return attention_context, attention_weights
209
-
210
-
211
- class ForwardAttentionV2(nn.Module):
212
- def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
213
- attention_location_n_filters, attention_location_kernel_size):
214
- super(ForwardAttentionV2, self).__init__()
215
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
216
- bias=False, w_init_gain='tanh')
217
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
218
- w_init_gain='tanh')
219
- self.v = LinearNorm(attention_dim, 1, bias=False)
220
- self.location_layer = LocationLayer(attention_location_n_filters,
221
- attention_location_kernel_size,
222
- attention_dim)
223
- self.score_mask_value = -float(1e20)
224
-
225
- def get_alignment_energies(self, query, processed_memory,
226
- attention_weights_cat):
227
- """
228
- PARAMS
229
- ------
230
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
231
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
232
- attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
233
- RETURNS
234
- -------
235
- alignment (batch, max_time)
236
- """
237
-
238
- processed_query = self.query_layer(query.unsqueeze(1))
239
- processed_attention_weights = self.location_layer(attention_weights_cat)
240
- energies = self.v(torch.tanh(
241
- processed_query + processed_attention_weights + processed_memory))
242
-
243
- energies = energies.squeeze(-1)
244
- return energies
245
-
246
- def forward(self, attention_hidden_state, memory, processed_memory,
247
- attention_weights_cat, mask, log_alpha):
248
- """
249
- PARAMS
250
- ------
251
- attention_hidden_state: attention rnn last output
252
- memory: encoder outputs
253
- processed_memory: processed encoder outputs
254
- attention_weights_cat: previous and cummulative attention weights
255
- mask: binary mask for padded data
256
- """
257
- log_energy = self.get_alignment_energies(
258
- attention_hidden_state, processed_memory, attention_weights_cat)
259
-
260
- #log_energy =
261
-
262
- if mask is not None:
263
- log_energy.data.masked_fill_(mask, self.score_mask_value)
264
-
265
- #attention_weights = F.softmax(alignment, dim=1)
266
-
267
- #content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
268
- #log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
269
-
270
- #log_total_score = log_alpha + content_score
271
-
272
- #previous_attention_weights = attention_weights_cat[:,0,:]
273
-
274
- log_alpha_shift_padded = []
275
- max_time = log_energy.size(1)
276
- for sft in range(2):
277
- shifted = log_alpha[:,:max_time-sft]
278
- shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
279
- log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
280
-
281
- biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
282
-
283
- log_alpha_new = biased + log_energy
284
-
285
- attention_weights = F.softmax(log_alpha_new, dim=1)
286
-
287
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
288
- attention_context = attention_context.squeeze(1)
289
-
290
- return attention_context, attention_weights, log_alpha_new
291
-
292
-
293
- class PhaseShuffle2d(nn.Module):
294
- def __init__(self, n=2):
295
- super(PhaseShuffle2d, self).__init__()
296
- self.n = n
297
- self.random = random.Random(1)
298
-
299
- def forward(self, x, move=None):
300
- # x.size = (B, C, M, L)
301
- if move is None:
302
- move = self.random.randint(-self.n, self.n)
303
-
304
- if move == 0:
305
- return x
306
- else:
307
- left = x[:, :, :, :move]
308
- right = x[:, :, :, move:]
309
- shuffled = torch.cat([right, left], dim=3)
310
- return shuffled
311
-
312
- class PhaseShuffle1d(nn.Module):
313
- def __init__(self, n=2):
314
- super(PhaseShuffle1d, self).__init__()
315
- self.n = n
316
- self.random = random.Random(1)
317
-
318
- def forward(self, x, move=None):
319
- # x.size = (B, C, M, L)
320
- if move is None:
321
- move = self.random.randint(-self.n, self.n)
322
-
323
- if move == 0:
324
- return x
325
- else:
326
- left = x[:, :, :move]
327
- right = x[:, :, move:]
328
- shuffled = torch.cat([right, left], dim=2)
329
-
330
- return shuffled
331
-
332
- class MFCC(nn.Module):
333
- def __init__(self, n_mfcc=40, n_mels=80):
334
- super(MFCC, self).__init__()
335
- self.n_mfcc = n_mfcc
336
- self.n_mels = n_mels
337
- self.norm = 'ortho'
338
- dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
339
- self.register_buffer('dct_mat', dct_mat)
340
-
341
- def forward(self, mel_specgram):
342
- if len(mel_specgram.shape) == 2:
343
- mel_specgram = mel_specgram.unsqueeze(0)
344
- unsqueezed = True
345
- else:
346
- unsqueezed = False
347
- # (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
348
- # -> (channel, time, n_mfcc).tranpose(...)
349
- mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
350
-
351
- # unpack batch
352
- if unsqueezed:
353
- mfcc = mfcc.squeeze(0)
354
- return mfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/ASR/models.py DELETED
@@ -1,186 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from torch.nn import TransformerEncoder
5
- import torch.nn.functional as F
6
- from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
7
-
8
- class ASRCNN(nn.Module):
9
- def __init__(self,
10
- input_dim=80,
11
- hidden_dim=256,
12
- n_token=35,
13
- n_layers=6,
14
- token_embedding_dim=256,
15
-
16
- ):
17
- super().__init__()
18
- self.n_token = n_token
19
- self.n_down = 1
20
- self.to_mfcc = MFCC()
21
- self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
22
- self.cnns = nn.Sequential(
23
- *[nn.Sequential(
24
- ConvBlock(hidden_dim),
25
- nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
26
- ) for n in range(n_layers)])
27
- self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
28
- self.ctc_linear = nn.Sequential(
29
- LinearNorm(hidden_dim//2, hidden_dim),
30
- nn.ReLU(),
31
- LinearNorm(hidden_dim, n_token))
32
- self.asr_s2s = ASRS2S(
33
- embedding_dim=token_embedding_dim,
34
- hidden_dim=hidden_dim//2,
35
- n_token=n_token)
36
-
37
- def forward(self, x, src_key_padding_mask=None, text_input=None):
38
- x = self.to_mfcc(x)
39
- x = self.init_cnn(x)
40
- x = self.cnns(x)
41
- x = self.projection(x)
42
- x = x.transpose(1, 2)
43
- ctc_logit = self.ctc_linear(x)
44
- if text_input is not None:
45
- _, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
46
- return ctc_logit, s2s_logit, s2s_attn
47
- else:
48
- return ctc_logit
49
-
50
- def get_feature(self, x):
51
- x = self.to_mfcc(x.squeeze(1))
52
- x = self.init_cnn(x)
53
- x = self.cnns(x)
54
- x = self.projection(x)
55
- return x
56
-
57
- def length_to_mask(self, lengths):
58
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
59
- mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
60
- return mask
61
-
62
- def get_future_mask(self, out_length, unmask_future_steps=0):
63
- """
64
- Args:
65
- out_length (int): returned mask shape is (out_length, out_length).
66
- unmask_futre_steps (int): unmasking future step size.
67
- Return:
68
- mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
69
- """
70
- index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
71
- mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
72
- return mask
73
-
74
- class ASRS2S(nn.Module):
75
- def __init__(self,
76
- embedding_dim=256,
77
- hidden_dim=512,
78
- n_location_filters=32,
79
- location_kernel_size=63,
80
- n_token=40):
81
- super(ASRS2S, self).__init__()
82
- self.embedding = nn.Embedding(n_token, embedding_dim)
83
- val_range = math.sqrt(6 / hidden_dim)
84
- self.embedding.weight.data.uniform_(-val_range, val_range)
85
-
86
- self.decoder_rnn_dim = hidden_dim
87
- self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
88
- self.attention_layer = Attention(
89
- self.decoder_rnn_dim,
90
- hidden_dim,
91
- hidden_dim,
92
- n_location_filters,
93
- location_kernel_size
94
- )
95
- self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
96
- self.project_to_hidden = nn.Sequential(
97
- LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
98
- nn.Tanh())
99
- self.sos = 1
100
- self.eos = 2
101
-
102
- def initialize_decoder_states(self, memory, mask):
103
- """
104
- moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
105
- """
106
- B, L, H = memory.shape
107
- self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
108
- self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
109
- self.attention_weights = torch.zeros((B, L)).type_as(memory)
110
- self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
111
- self.attention_context = torch.zeros((B, H)).type_as(memory)
112
- self.memory = memory
113
- self.processed_memory = self.attention_layer.memory_layer(memory)
114
- self.mask = mask
115
- self.unk_index = 3
116
- self.random_mask = 0.1
117
-
118
- def forward(self, memory, memory_mask, text_input):
119
- """
120
- moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
121
- moemory_mask.shape = (B, L, )
122
- texts_input.shape = (B, T)
123
- """
124
- self.initialize_decoder_states(memory, memory_mask)
125
- # text random mask
126
- random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
127
- _text_input = text_input.clone()
128
- _text_input.masked_fill_(random_mask, self.unk_index)
129
- decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
130
- start_embedding = self.embedding(
131
- torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
132
- decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
133
-
134
- hidden_outputs, logit_outputs, alignments = [], [], []
135
- while len(hidden_outputs) < decoder_inputs.size(0):
136
-
137
- decoder_input = decoder_inputs[len(hidden_outputs)]
138
- hidden, logit, attention_weights = self.decode(decoder_input)
139
- hidden_outputs += [hidden]
140
- logit_outputs += [logit]
141
- alignments += [attention_weights]
142
-
143
- hidden_outputs, logit_outputs, alignments = \
144
- self.parse_decoder_outputs(
145
- hidden_outputs, logit_outputs, alignments)
146
-
147
- return hidden_outputs, logit_outputs, alignments
148
-
149
-
150
- def decode(self, decoder_input):
151
-
152
- cell_input = torch.cat((decoder_input, self.attention_context), -1)
153
- self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
154
- cell_input,
155
- (self.decoder_hidden, self.decoder_cell))
156
-
157
- attention_weights_cat = torch.cat(
158
- (self.attention_weights.unsqueeze(1),
159
- self.attention_weights_cum.unsqueeze(1)),dim=1)
160
-
161
- self.attention_context, self.attention_weights = self.attention_layer(
162
- self.decoder_hidden,
163
- self.memory,
164
- self.processed_memory,
165
- attention_weights_cat,
166
- self.mask)
167
-
168
- self.attention_weights_cum += self.attention_weights
169
-
170
- hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
171
- hidden = self.project_to_hidden(hidden_and_context)
172
-
173
- # dropout to increasing g
174
- logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
175
-
176
- return hidden, logit, self.attention_weights
177
-
178
- def parse_decoder_outputs(self, hidden, logit, alignments):
179
-
180
- # -> [B, T_out + 1, max_time]
181
- alignments = torch.stack(alignments).transpose(0,1)
182
- # [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
183
- logit = torch.stack(logit).transpose(0, 1).contiguous()
184
- hidden = torch.stack(hidden).transpose(0, 1).contiguous()
185
-
186
- return hidden, logit, alignments
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/JDC/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Utils/Utils2/JDC/bst.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
3
- size 21029926
 
 
 
 
Utils/Utils2/JDC/model.py DELETED
@@ -1,190 +0,0 @@
1
- """
2
- Implementation of model from:
3
- Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
4
- Convolutional Recurrent Neural Networks" (2019)
5
- Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
6
- """
7
- import torch
8
- from torch import nn
9
-
10
- class JDCNet(nn.Module):
11
- """
12
- Joint Detection and Classification Network model for singing voice melody.
13
- """
14
- def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
15
- super().__init__()
16
- self.num_class = num_class
17
-
18
- # input = (b, 1, 31, 513), b = batch size
19
- self.conv_block = nn.Sequential(
20
- nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
21
- nn.BatchNorm2d(num_features=64),
22
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
23
- nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
24
- )
25
-
26
- # res blocks
27
- self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
28
- self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
29
- self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
30
-
31
- # pool block
32
- self.pool_block = nn.Sequential(
33
- nn.BatchNorm2d(num_features=256),
34
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
35
- nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
36
- nn.Dropout(p=0.2),
37
- )
38
-
39
- # maxpool layers (for auxiliary network inputs)
40
- # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
41
- self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
42
- # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
43
- self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
44
- # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
45
- self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
46
-
47
- # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
48
- self.detector_conv = nn.Sequential(
49
- nn.Conv2d(640, 256, 1, bias=False),
50
- nn.BatchNorm2d(256),
51
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
52
- nn.Dropout(p=0.2),
53
- )
54
-
55
- # input: (b, 31, 512) - resized from (b, 256, 31, 2)
56
- self.bilstm_classifier = nn.LSTM(
57
- input_size=512, hidden_size=256,
58
- batch_first=True, bidirectional=True) # (b, 31, 512)
59
-
60
- # input: (b, 31, 512) - resized from (b, 256, 31, 2)
61
- self.bilstm_detector = nn.LSTM(
62
- input_size=512, hidden_size=256,
63
- batch_first=True, bidirectional=True) # (b, 31, 512)
64
-
65
- # input: (b * 31, 512)
66
- self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
67
-
68
- # input: (b * 31, 512)
69
- self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
70
-
71
- # initialize weights
72
- self.apply(self.init_weights)
73
-
74
- def get_feature_GAN(self, x):
75
- seq_len = x.shape[-2]
76
- x = x.float().transpose(-1, -2)
77
-
78
- convblock_out = self.conv_block(x)
79
-
80
- resblock1_out = self.res_block1(convblock_out)
81
- resblock2_out = self.res_block2(resblock1_out)
82
- resblock3_out = self.res_block3(resblock2_out)
83
- poolblock_out = self.pool_block[0](resblock3_out)
84
- poolblock_out = self.pool_block[1](poolblock_out)
85
-
86
- return poolblock_out.transpose(-1, -2)
87
-
88
- def get_feature(self, x):
89
- seq_len = x.shape[-2]
90
- x = x.float().transpose(-1, -2)
91
-
92
- convblock_out = self.conv_block(x)
93
-
94
- resblock1_out = self.res_block1(convblock_out)
95
- resblock2_out = self.res_block2(resblock1_out)
96
- resblock3_out = self.res_block3(resblock2_out)
97
- poolblock_out = self.pool_block[0](resblock3_out)
98
- poolblock_out = self.pool_block[1](poolblock_out)
99
-
100
- return self.pool_block[2](poolblock_out)
101
-
102
- def forward(self, x):
103
- """
104
- Returns:
105
- classification_prediction, detection_prediction
106
- sizes: (b, 31, 722), (b, 31, 2)
107
- """
108
- ###############################
109
- # forward pass for classifier #
110
- ###############################
111
- seq_len = x.shape[-1]
112
- x = x.float().transpose(-1, -2)
113
-
114
- convblock_out = self.conv_block(x)
115
-
116
- resblock1_out = self.res_block1(convblock_out)
117
- resblock2_out = self.res_block2(resblock1_out)
118
- resblock3_out = self.res_block3(resblock2_out)
119
-
120
-
121
- poolblock_out = self.pool_block[0](resblock3_out)
122
- poolblock_out = self.pool_block[1](poolblock_out)
123
- GAN_feature = poolblock_out.transpose(-1, -2)
124
- poolblock_out = self.pool_block[2](poolblock_out)
125
-
126
- # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
127
- classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
128
- classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
129
-
130
- classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
131
- classifier_out = self.classifier(classifier_out)
132
- classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
133
-
134
- # sizes: (b, 31, 722), (b, 31, 2)
135
- # classifier output consists of predicted pitch classes per frame
136
- # detector output consists of: (isvoice, notvoice) estimates per frame
137
- return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
138
-
139
- @staticmethod
140
- def init_weights(m):
141
- if isinstance(m, nn.Linear):
142
- nn.init.kaiming_uniform_(m.weight)
143
- if m.bias is not None:
144
- nn.init.constant_(m.bias, 0)
145
- elif isinstance(m, nn.Conv2d):
146
- nn.init.xavier_normal_(m.weight)
147
- elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
148
- for p in m.parameters():
149
- if p.data is None:
150
- continue
151
-
152
- if len(p.shape) >= 2:
153
- nn.init.orthogonal_(p.data)
154
- else:
155
- nn.init.normal_(p.data)
156
-
157
-
158
- class ResBlock(nn.Module):
159
- def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
160
- super().__init__()
161
- self.downsample = in_channels != out_channels
162
-
163
- # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
164
- self.pre_conv = nn.Sequential(
165
- nn.BatchNorm2d(num_features=in_channels),
166
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
167
- nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
168
- )
169
-
170
- # conv layers
171
- self.conv = nn.Sequential(
172
- nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
173
- kernel_size=3, padding=1, bias=False),
174
- nn.BatchNorm2d(out_channels),
175
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
176
- nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
177
- )
178
-
179
- # 1 x 1 convolution layer to match the feature dimensions
180
- self.conv1by1 = None
181
- if self.downsample:
182
- self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
183
-
184
- def forward(self, x):
185
- x = self.pre_conv(x)
186
- if self.downsample:
187
- x = self.conv(x) + self.conv1by1(x)
188
- else:
189
- x = self.conv(x) + x
190
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/PLBERT/config.yml DELETED
@@ -1,30 +0,0 @@
1
- log_dir: "Checkpoint"
2
- mixed_precision: "fp16"
3
- data_folder: "wikipedia_20220301.en.processed"
4
- batch_size: 192
5
- save_interval: 5000
6
- log_interval: 10
7
- num_process: 1 # number of GPUs
8
- num_steps: 1000000
9
-
10
- dataset_params:
11
- tokenizer: "transfo-xl-wt103"
12
- token_separator: " " # token used for phoneme separator (space)
13
- token_mask: "M" # token used for phoneme mask (M)
14
- word_separator: 3039 # token used for word separator (<formula>)
15
- token_maps: "token_maps.pkl" # token map path
16
-
17
- max_mel_length: 512 # max phoneme length
18
-
19
- word_mask_prob: 0.15 # probability to mask the entire word
20
- phoneme_mask_prob: 0.1 # probability to mask each phoneme
21
- replace_prob: 0.2 # probablity to replace phonemes
22
-
23
- model_params:
24
- vocab_size: 178
25
- hidden_size: 768
26
- num_attention_heads: 12
27
- intermediate_size: 2048
28
- max_position_embeddings: 512
29
- num_hidden_layers: 12
30
- dropout: 0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/PLBERT/step_1000000.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
3
- size 25185187
 
 
 
 
Utils/Utils2/PLBERT/util.py DELETED
@@ -1,42 +0,0 @@
1
- import os
2
- import yaml
3
- import torch
4
- from transformers import AlbertConfig, AlbertModel
5
-
6
- class CustomAlbert(AlbertModel):
7
- def forward(self, *args, **kwargs):
8
- # Call the original forward method
9
- outputs = super().forward(*args, **kwargs)
10
-
11
- # Only return the last_hidden_state
12
- return outputs.last_hidden_state
13
-
14
-
15
- def load_plbert(log_dir):
16
- config_path = os.path.join(log_dir, "config.yml")
17
- plbert_config = yaml.safe_load(open(config_path))
18
-
19
- albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
20
- bert = CustomAlbert(albert_base_configuration)
21
-
22
- files = os.listdir(log_dir)
23
- ckpts = []
24
- for f in os.listdir(log_dir):
25
- if f.startswith("step_"): ckpts.append(f)
26
-
27
- iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
28
- iters = sorted(iters)[-1]
29
-
30
- checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
31
- state_dict = checkpoint['net']
32
- from collections import OrderedDict
33
- new_state_dict = OrderedDict()
34
- for k, v in state_dict.items():
35
- name = k[7:] # remove `module.`
36
- if name.startswith('encoder.'):
37
- name = name[8:] # remove `encoder.`
38
- new_state_dict[name] = v
39
- del new_state_dict["embeddings.position_ids"]
40
- bert.load_state_dict(new_state_dict, strict=False)
41
-
42
- return bert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/config.yml DELETED
@@ -1,21 +0,0 @@
1
- {ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
2
- PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
3
- min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
4
- device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
5
- load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
6
- TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
7
- lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
8
- lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
9
- model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
10
- 5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
11
- upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
12
- dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
13
- std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
14
- num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
15
- max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
16
- slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
17
- sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
18
- lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
19
- win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
20
- save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
21
- iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/Utils2/engineer_style_vectors_v2.py DELETED
@@ -1,331 +0,0 @@
1
-
2
- from pathlib import Path
3
- import shutil
4
- import csv
5
- import io
6
- import os
7
- import typing
8
- import wave
9
- import sys
10
- from mimic3_tts.__main__ import (CommandLineInterfaceState,
11
- get_args,
12
- initialize_args,
13
- initialize_tts,
14
- # print_voices,
15
- # process_lines,
16
- shutdown_tts,
17
- OutputNaming,
18
- process_line)
19
-
20
-
21
- def process_lines(state: CommandLineInterfaceState, wav_path=None):
22
- '''MIMIC3 INTERNAL CALL that yields the sigh sound'''
23
-
24
- args = state.args
25
-
26
- result_idx = 0
27
- print(f'why waitings in the for loop LIN {state.texts=}\n')
28
- for line in state.texts:
29
- print(f'LIN {line=}\n') # prints \n so is empty not getting the predifne text of state.texts
30
- line_voice: typing.Optional[str] = None
31
- line_id = ""
32
- line = line.strip()
33
- # if not line:
34
- # continue
35
-
36
- if args.output_naming == OutputNaming.ID:
37
- # Line has the format id|text instead of just text
38
- with io.StringIO(line) as line_io:
39
- reader = csv.reader(line_io, delimiter=args.csv_delimiter)
40
- row = next(reader)
41
- line_id, line = row[0], row[-1]
42
- if args.csv_voice:
43
- line_voice = row[1]
44
-
45
- process_line(line, state, line_id=line_id, line_voice=line_voice)
46
- result_idx += 1
47
-
48
- print('\nARRive at All Audio writing\n\n\n\n')
49
- # -------------------------------------------------------------------------
50
-
51
- # Write combined audio to stdout
52
- if state.all_audio:
53
- # _LOGGER.debug("Writing WAV audio to stdout")
54
-
55
- if sys.stdout.isatty() and (not state.args.stdout):
56
- with io.BytesIO() as wav_io:
57
- wav_file_play: wave.Wave_write = wave.open(wav_io, "wb")
58
- with wav_file_play:
59
- wav_file_play.setframerate(state.sample_rate_hz)
60
- wav_file_play.setsampwidth(state.sample_width_bytes)
61
- wav_file_play.setnchannels(state.num_channels)
62
- wav_file_play.writeframes(state.all_audio)
63
-
64
- # play_wav_bytes(state.args, wav_io.getvalue())
65
- # wav_path = '_direct_call_2.wav'
66
- with open(wav_path, 'wb') as wav_file:
67
- wav_file.write(wav_io.getvalue())
68
- wav_file.seek(0)
69
-
70
- # -----------------------------------------------------------------------------
71
- # cat _tmp_ssml.txt | mimic3 --cuda --ssml --noise-w 0.90001 --length-scale 0.91 --noise-scale 0.04 > noise_w=0.90_en_happy_2.wav
72
- # ======================================================================
73
- out_dir = 'assets/'
74
- reference_wav_directory = 'assets/wavs/style_vector_v2/'
75
- Path(reference_wav_directory).mkdir(parents=True, exist_ok=True)
76
- Path(out_dir).mkdir(parents=True, exist_ok=True)
77
-
78
- wav_dir = 'assets/wavs/'
79
- Path(wav_dir).mkdir(parents=True, exist_ok=True)
80
- N_PIX = 11
81
-
82
-
83
- # =======================================================================
84
- # S T A R T G E N E R A T E png/wav
85
- # =======================================================================
86
-
87
- NOISE_SCALE = .667
88
- NOISE_W = .9001 #.8 #.90001 # default .8 in __main__.py @ L697 IGNORED DUE TO ARTEfACTS - FOR NOW USE default
89
-
90
- a = [
91
- 'p239',
92
- 'p236',
93
- 'p264',
94
- 'p250',
95
- 'p259',
96
- 'p247',
97
- 'p261',
98
- 'p263',
99
- 'p283',
100
- 'p274',
101
- 'p286',
102
- 'p276',
103
- 'p270',
104
- 'p281',
105
- 'p277',
106
- 'p231',
107
- 'p238',
108
- 'p271',
109
- 'p257',
110
- 'p273',
111
- 'p284',
112
- 'p329',
113
- 'p361',
114
- 'p287',
115
- 'p360',
116
- 'p374',
117
- 'p376',
118
- 'p310',
119
- 'p304',
120
- 'p340',
121
- 'p347',
122
- 'p330',
123
- 'p308',
124
- 'p314',
125
- 'p317',
126
- 'p339',
127
- 'p311',
128
- 'p294',
129
- 'p305',
130
- 'p266',
131
- 'p335',
132
- 'p334',
133
- 'p318',
134
- 'p323',
135
- 'p351',
136
- 'p333',
137
- 'p313',
138
- 'p316',
139
- 'p244',
140
- 'p307',
141
- 'p363',
142
- 'p336',
143
- 'p312',
144
- 'p267',
145
- 'p297',
146
- 'p275',
147
- 'p295',
148
- 'p288',
149
- 'p258',
150
- 'p301',
151
- 'p232',
152
- 'p292',
153
- 'p272',
154
- 'p278',
155
- 'p280',
156
- 'p341',
157
- 'p268',
158
- 'p298',
159
- 'p299',
160
- 'p279',
161
- 'p285',
162
- 'p326',
163
- 'p300',
164
- 's5',
165
- 'p230',
166
- 'p254',
167
- 'p269',
168
- 'p293',
169
- 'p252',
170
- 'p345',
171
- 'p262',
172
- 'p243',
173
- 'p227',
174
- 'p343',
175
- 'p255',
176
- 'p229',
177
- 'p240',
178
- 'p248',
179
- 'p253',
180
- 'p233',
181
- 'p228',
182
- 'p251',
183
- 'p282',
184
- 'p246',
185
- 'p234',
186
- 'p226',
187
- 'p260',
188
- 'p245',
189
- 'p241',
190
- 'p303',
191
- 'p265',
192
- 'p306',
193
- 'p237',
194
- 'p249',
195
- 'p256',
196
- 'p302',
197
- 'p364',
198
- 'p225',
199
- 'p362']
200
-
201
- print(len(a))
202
-
203
- b = []
204
-
205
- for row in a:
206
- b.append(f'en_US/vctk_low#{row}')
207
-
208
- # print(b)
209
-
210
- # 00000000 arctic
211
-
212
-
213
- a = [
214
- 'awb' # comma
215
- 'rms',
216
- 'slt',
217
- 'ksp',
218
- 'clb',
219
- 'aew',
220
- 'bdl',
221
- 'lnh',
222
- 'jmk',
223
- 'rxr',
224
- 'fem',
225
- 'ljm',
226
- 'slp',
227
- 'ahw',
228
- 'axb',
229
- 'aup',
230
- 'eey',
231
- 'gka',
232
- ]
233
-
234
-
235
- for row in a:
236
- b.append(f'en_US/cmu-arctic_low#{row}')
237
-
238
- # HIFItts
239
-
240
- a = ['9017',
241
- '6097',
242
- '92']
243
-
244
- for row in a:
245
- b.append(f'en_US/hifi-tts_low#{row}')
246
-
247
- a = [
248
- 'elliot_miller',
249
- 'judy_bieber',
250
- 'mary_ann']
251
-
252
- for row in a:
253
- b.append(f'en_US/m-ailabs_low#{row}')
254
-
255
- # LJspeech - single speaker
256
-
257
- b.append(f'en_US/ljspeech_low')
258
-
259
- # en_UK apope - only speaker
260
-
261
- b.append(f'en_UK/apope_low')
262
-
263
- all_names = b
264
-
265
-
266
- VOICES = {}
267
- for _id, _voice in enumerate(all_names):
268
-
269
- # If GitHub Quota exceded copy mimic-voices from local copies
270
- #
271
- # https://github.com/MycroftAI/mimic3-voices
272
- #
273
- home_voice_dir = f'/home/audeering.local/dkounadis/.local/share/mycroft/mimic3/voices/{_voice.split("#")[0]}/'
274
- Path(home_voice_dir).mkdir(parents=True, exist_ok=True)
275
- speaker_free_voice_name = _voice.split("#")[0] if '#' in _voice else _voice
276
- if not os.path.isfile(home_voice_dir + 'generator.onnx'):
277
- shutil.copyfile(
278
- f'/data/dkounadis/cache/mimic3-voices/voices/{speaker_free_voice_name}/generator.onnx',
279
- home_voice_dir + 'generator.onnx') # 'en_US incl. voice
280
-
281
- prepare_file = _voice.replace('/', '_').replace('#', '_').replace('_low', '')
282
- if 'cmu-arctic' in prepare_file:
283
- prepare_file = prepare_file.replace('cmu-arctic', 'cmu_arctic') + '.wav'
284
- else:
285
- prepare_file = prepare_file + '.wav' # [...cmu-arctic...](....cmu_arctic....wav)
286
-
287
- file_true = prepare_file.split('.wav')[0] + '_true_.wav'
288
- file_false = prepare_file.split('.wav')[0] + '_false_.wav'
289
- print(prepare_file, file_false, file_true)
290
-
291
-
292
- reference_wav = reference_wav_directory + prepare_file
293
- rate = 4 # high speed sounds nice if used as speaker-reference audio for StyleTTS2
294
- _ssml = (
295
- '<speak>'
296
- '<prosody volume=\'64\'>'
297
- f'<prosody rate=\'{rate}\'>'
298
- f'<voice name=\'{_voice}\'>'
299
- '<s>'
300
- 'Sweet dreams are made of this, .. !!! # I travel the world and the seven seas.'
301
- '</s>'
302
- '</voice>'
303
- '</prosody>'
304
- '</prosody>'
305
- '</speak>'
306
- )
307
- with open('_tmp_ssml.txt', 'w') as f:
308
- f.write(_ssml)
309
-
310
-
311
- # ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > {reference_wav}', shell=True)
312
- # ps.wait() # using ps to call mimic3 because samples dont have time to be written in stdout buffer
313
- args = get_args()
314
- args.ssml = True
315
- args.text = [_ssml] #['aa', 'bb'] #txt
316
- args.interactive = False
317
- # args.output_naming = OutputNaming.TIME
318
-
319
- state = CommandLineInterfaceState(args=args)
320
- initialize_args(state)
321
- initialize_tts(state)
322
- # args.texts = [txt] #['aa', 'bb'] #txt
323
- # state.stdout = '.' #None #'makeme.wav'
324
- # state.output_dir = '.noopy'
325
- # state.interactive = False
326
- # state.output_naming = OutputNaming.TIME
327
- # # state.ssml = 1234546575
328
- # state.stdout = True
329
- # state.tts = True
330
- process_lines(state, wav_path=reference_wav)
331
- shutdown_tts(state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api.py CHANGED
@@ -120,7 +120,8 @@ def overlay(x, scene=None):
120
  def tts_multi_sentence(precomputed_style_vector=None,
121
  text=None,
122
  voice=None,
123
- scene=None):
 
124
  '''create 24kHZ np.array with tts
125
 
126
  precomputed_style_vector : required if en_US or en_UK in voice, so
@@ -131,7 +132,8 @@ def tts_multi_sentence(precomputed_style_vector=None,
131
  '''
132
 
133
 
134
- # StyleTTS2
 
135
  if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
136
  assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
137
  x = []
@@ -142,18 +144,18 @@ def tts_multi_sentence(precomputed_style_vector=None,
142
  beta=0.7,
143
  diffusion_steps=7,
144
  embedding_scale=1))
145
- x = np.concatenate(x)
146
-
147
- x /= np.abs(x).max() + 1e-7 # amplify speech to full [-1,1]
148
-
149
- return overlay(x, scene=scene)
 
 
 
 
 
150
 
151
- # Fallback - Mimic-3
152
- text_utils.store_ssml(text=text, voice=voice) # Text has to be list of single sentences
153
- ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
154
- ps.wait()
155
- x, fs = soundfile.read('_tmp.wav')
156
- x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :] # reshapes (64,) -> (1,64)
157
 
158
  return overlay(x, scene=scene)
159
 
@@ -187,13 +189,15 @@ def serve_wav():
187
 
188
  print('Saved all files on Server Side\n\n')
189
 
190
- args = SimpleNamespace(text=None if r.get('text') is None else CACHE_DIR + r.get('text')[0].replace("/",""),
191
- video=None if r.get('video') is None else CACHE_DIR + r.get('video')[0].replace("/",""),
192
- image=None if r.get('image') is None else CACHE_DIR + r.get('image')[0].replace("/",""),
193
- voice=r.get('voice')[0],
194
- native=None if r.get('native') is None else CACHE_DIR + r.get('native')[0].replace("/",""),
195
- affective = r.get('affective')[0],
196
- scene=r.get('scene')[0] if r.get('scene') is not None else None
 
 
197
  )
198
  # print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
199
 
@@ -258,7 +262,7 @@ def serve_wav():
258
  '#', '_').replace(
259
  'cmu-arctic', 'cmu_arctic').replace(
260
  '_low', '') + '.wav')
261
- print('\n STYLE VECTOR \n', precomputed_style_vector.shape)
262
  # ====SILENT VIDEO====
263
 
264
  if args.video is not None:
@@ -391,7 +395,8 @@ def serve_wav():
391
  pieces.append(tts_multi_sentence(text=[_text_],
392
  precomputed_style_vector=precomputed_style_vector,
393
  voice=args.voice,
394
- scene=args.scene)
 
395
  )
396
  total = np.concatenate(pieces, 0)
397
  # x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
@@ -411,7 +416,8 @@ def serve_wav():
411
  x = tts_multi_sentence(text=text,
412
  precomputed_style_vector=precomputed_style_vector,
413
  voice=args.voice,
414
- scene=args.scene)
 
415
  soundfile.write(AUDIO_TRACK, x, 24000)
416
 
417
  # IMAGE 2 SPEECH
@@ -429,7 +435,8 @@ def serve_wav():
429
  x = tts_multi_sentence(text=text,
430
  precomputed_style_vector=precomputed_style_vector,
431
  voice=args.voice,
432
- scene=args.scene
 
433
  )
434
  soundfile.write(AUDIO_TRACK, x, 24000)
435
  if args.video or args.image:
@@ -457,7 +464,8 @@ def serve_wav():
457
  x = tts_multi_sentence(text=text,
458
  precomputed_style_vector=precomputed_style_vector,
459
  voice=args.voice,
460
- scene=args.scene)
 
461
  OUT_FILE = 'tmp.wav'
462
  soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
463
 
 
120
  def tts_multi_sentence(precomputed_style_vector=None,
121
  text=None,
122
  voice=None,
123
+ scene=None,
124
+ speed=None):
125
  '''create 24kHZ np.array with tts
126
 
127
  precomputed_style_vector : required if en_US or en_UK in voice, so
 
132
  '''
133
 
134
 
135
+ # StyleTTS2 - English
136
+
137
  if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
138
  assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
139
  x = []
 
144
  beta=0.7,
145
  diffusion_steps=7,
146
  embedding_scale=1))
147
+ # Fallback - MMS TTS - Non-English Foreign voice=language
148
+ else:
149
+ x = []
150
+ for _sentence in text:
151
+ x.append(msinference.foreign(text=_sentence,
152
+ lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
153
+ speed=speed))
154
+
155
+
156
+ x = np.concatenate(x)
157
 
158
+ x /= np.abs(x).max() + 1e-7 # amplify speech to full [-1,1]
 
 
 
 
 
159
 
160
  return overlay(x, scene=scene)
161
 
 
189
 
190
  print('Saved all files on Server Side\n\n')
191
 
192
+ args = SimpleNamespace(
193
+ text = None if r.get('text') is None else CACHE_DIR + r.get('text' )[0][-6:],
194
+ video = None if r.get('video') is None else CACHE_DIR + r.get('video')[0][-6:],
195
+ image = None if r.get('image') is None else CACHE_DIR + r.get('image')[0][-6:],
196
+ native = None if r.get('native') is None else CACHE_DIR + r.get('native')[0][-6:],
197
+ affective = r.get('affective')[0],
198
+ voice = r.get('voice')[0],
199
+ speed = float(r.get('speed')[0]), # For Non-English MMS TTS
200
+ scene=r.get('scene')[0] if r.get('scene') is not None else None,
201
  )
202
  # print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
203
 
 
262
  '#', '_').replace(
263
  'cmu-arctic', 'cmu_arctic').replace(
264
  '_low', '') + '.wav')
265
+ # print('\n STYLE VECTOR \n', precomputed_style_vector.shape) # can be NoNe for foreign lang TTS
266
  # ====SILENT VIDEO====
267
 
268
  if args.video is not None:
 
395
  pieces.append(tts_multi_sentence(text=[_text_],
396
  precomputed_style_vector=precomputed_style_vector,
397
  voice=args.voice,
398
+ scene=args.scene,
399
+ speed=args.speed)
400
  )
401
  total = np.concatenate(pieces, 0)
402
  # x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
 
416
  x = tts_multi_sentence(text=text,
417
  precomputed_style_vector=precomputed_style_vector,
418
  voice=args.voice,
419
+ scene=args.scene,
420
+ speed=args.speed)
421
  soundfile.write(AUDIO_TRACK, x, 24000)
422
 
423
  # IMAGE 2 SPEECH
 
435
  x = tts_multi_sentence(text=text,
436
  precomputed_style_vector=precomputed_style_vector,
437
  voice=args.voice,
438
+ scene=args.scene,
439
+ speed=args.speed
440
  )
441
  soundfile.write(AUDIO_TRACK, x, 24000)
442
  if args.video or args.image:
 
464
  x = tts_multi_sentence(text=text,
465
  precomputed_style_vector=precomputed_style_vector,
466
  voice=args.voice,
467
+ scene=args.scene,
468
+ speed=args.speed)
469
  OUT_FILE = 'tmp.wav'
470
  soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
471
 
msinference.py CHANGED
@@ -1,26 +1,20 @@
1
  import torch
2
  from cached_path import cached_path
3
  import nltk
 
4
  # nltk.download('punkt')
5
- import random
6
- random.seed(0)
7
  import numpy as np
8
  np.random.seed(0)
9
  import time
10
- import random
11
  import yaml
12
  import torch.nn.functional as F
13
  import copy
14
  import torchaudio
15
  import librosa
16
  from models import *
17
-
18
- from scipy.io.wavfile import write
19
  from munch import Munch
20
  from torch import nn
21
  from nltk.tokenize import word_tokenize
22
- from monotonic_align import mask_from_lens
23
- from monotonic_align.core import maximum_path_c
24
 
25
  torch.manual_seed(0)
26
  torch.backends.cudnn.benchmark = False
@@ -67,7 +61,10 @@ mean, std = -4, 4
67
 
68
 
69
 
70
-
 
 
 
71
 
72
 
73
 
@@ -172,7 +169,13 @@ sampler = DiffusionSampler(
172
  clamp=False
173
  )
174
 
175
- def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False):
 
 
 
 
 
 
176
  text = text.strip()
177
  ps = global_phonemizer.phonemize([text])
178
  # print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
@@ -254,8 +257,226 @@ def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding
254
  asr_new[:, :, 1:] = asr[:, :, 0:-1]
255
  asr = asr_new
256
 
257
- out = model.decoder(asr,
258
  F0_pred, N_pred, ref.squeeze().unsqueeze(0))
259
 
260
 
261
- return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  from cached_path import cached_path
3
  import nltk
4
+ import audresample
5
  # nltk.download('punkt')
 
 
6
  import numpy as np
7
  np.random.seed(0)
8
  import time
 
9
  import yaml
10
  import torch.nn.functional as F
11
  import copy
12
  import torchaudio
13
  import librosa
14
  from models import *
 
 
15
  from munch import Munch
16
  from torch import nn
17
  from nltk.tokenize import word_tokenize
 
 
18
 
19
  torch.manual_seed(0)
20
  torch.backends.cudnn.benchmark = False
 
61
 
62
 
63
 
64
+ def alpha_num(f):
65
+ f = re.sub(' +', ' ', f) # delete spaces
66
+ f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
67
+ return f
68
 
69
 
70
 
 
169
  clamp=False
170
  )
171
 
172
+ def inference(text,
173
+ ref_s,
174
+ alpha = 0.3,
175
+ beta = 0.7,
176
+ diffusion_steps=5,
177
+ embedding_scale=1,
178
+ use_gruut=False):
179
  text = text.strip()
180
  ps = global_phonemizer.phonemize([text])
181
  # print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
 
257
  asr_new[:, :, 1:] = asr[:, :, 0:-1]
258
  asr = asr_new
259
 
260
+ x = model.decoder(asr,
261
  F0_pred, N_pred, ref.squeeze().unsqueeze(0))
262
 
263
 
264
+ x = x.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model
265
+
266
+ x /= np.abs(x).max() + 1e-7
267
+
268
+ return x
269
+
270
+
271
+
272
+
273
+ # ___________________________________________________________
274
+
275
+ # https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
276
+ # ___________________________________________________________
277
+
278
+ # -*- coding: utf-8 -*-
279
+
280
+ # Copyright (c) Facebook, Inc. and its affiliates.
281
+ #
282
+ # This source code is licensed under the MIT license found in the
283
+ # LICENSE file in the root directory of this source tree.
284
+
285
+ import os
286
+ import re
287
+ import tempfile
288
+ import torch
289
+ import sys
290
+ import numpy as np
291
+ import audiofile
292
+ from huggingface_hub import hf_hub_download
293
+
294
+ # Setup TTS env
295
+ if "vits" not in sys.path:
296
+ sys.path.append("Modules/vits")
297
+
298
+ from Modules.vits import commons, utils
299
+ from Modules.vits.models import SynthesizerTrn
300
+
301
+ TTS_LANGUAGES = {}
302
+ # with open('_d.csv', 'w') as f2:
303
+ with open(f"Utils/all_langs.csv") as f:
304
+ for line in f:
305
+ iso, name = line.split(",", 1)
306
+ TTS_LANGUAGES[iso.strip()] = name.strip()
307
+ # f2.write(iso + ',' + name.replace("a S","")+'\n')
308
+
309
+
310
+
311
+ # LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
312
+
313
+
314
+
315
+
316
+ def has_cyrillic(text):
317
+ # https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
318
+ return bool(re.search('[\u0400-\u04FF]', text))
319
+
320
+ class TextForeign(object):
321
+ def __init__(self, vocab_file):
322
+ self.symbols = [
323
+ x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
324
+ ]
325
+ self.SPACE_ID = self.symbols.index(" ")
326
+ self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
327
+ self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
328
+
329
+ def text_to_sequence(self, text, cleaner_names):
330
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
331
+ Args:
332
+ text: string to convert to a sequence
333
+ cleaner_names: names of the cleaner functions to run the text through
334
+ Returns:
335
+ List of integers corresponding to the symbols in the text
336
+ """
337
+ sequence = []
338
+ clean_text = text.strip()
339
+ for symbol in clean_text:
340
+ symbol_id = self._symbol_to_id[symbol]
341
+ sequence += [symbol_id]
342
+ return sequence
343
+
344
+ def uromanize(self, text, uroman_pl):
345
+ iso = "xxx"
346
+ with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
347
+ with open(tf.name, "w") as f:
348
+ f.write("\n".join([text]))
349
+ cmd = f"perl " + uroman_pl
350
+ cmd += f" -l {iso} "
351
+ cmd += f" < {tf.name} > {tf2.name}"
352
+ os.system(cmd)
353
+ outtexts = []
354
+ with open(tf2.name) as f:
355
+ for line in f:
356
+ line = re.sub(r"\s+", " ", line).strip()
357
+ outtexts.append(line)
358
+ outtext = outtexts[0]
359
+ return outtext
360
+
361
+ def get_text(self, text, hps):
362
+ text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
363
+ if hps.data.add_blank:
364
+ text_norm = commons.intersperse(text_norm, 0)
365
+ text_norm = torch.LongTensor(text_norm)
366
+ return text_norm
367
+
368
+ def filter_oov(self, text, lang=None):
369
+ text = self.preprocess_char(text, lang=lang)
370
+ val_chars = self._symbol_to_id
371
+ txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
372
+ return txt_filt
373
+
374
+ def preprocess_char(self, text, lang=None):
375
+ """
376
+ Special treatement of characters in certain languages
377
+ """
378
+ if lang == "ron":
379
+ text = text.replace("ț", "ţ")
380
+ print(f"{lang} (ț -> ţ): {text}")
381
+ return text
382
+
383
+
384
+ def foreign(text=None, lang='romanian', speed=None):
385
+ # TTS for non english languages supported by
386
+ # https://huggingface.co/spaces/mms-meta/MMS
387
+
388
+ if 'hun' in lang.lower():
389
+
390
+ lang_code = 'hun'
391
+
392
+ elif 'ser' in lang.lower():
393
+
394
+ if has_cyrillic(text):
395
+
396
+ lang_code = 'rmc-script_cyrillic' # romani carpathian (has also Vlax)
397
+
398
+ else:
399
+
400
+ lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
401
+
402
+ elif 'rom' in lang.lower():
403
+
404
+ lang_code = 'ron'
405
+ speed = 1.24 if speed is None else speed
406
+
407
+ else:
408
+ lang_code = lang.split()[0].strip()
409
+ # Decoded Language
410
+ print(f'\n\nLANG {lang_code=}\n_____________________\n')
411
+ vocab_file = hf_hub_download(
412
+ repo_id="facebook/mms-tts",
413
+ filename="vocab.txt",
414
+ subfolder=f"models/{lang_code}",
415
+ )
416
+ config_file = hf_hub_download(
417
+ repo_id="facebook/mms-tts",
418
+ filename="config.json",
419
+ subfolder=f"models/{lang_code}",
420
+ )
421
+ g_pth = hf_hub_download(
422
+ repo_id="facebook/mms-tts",
423
+ filename="G_100000.pth",
424
+ subfolder=f"models/{lang_code}",
425
+ )
426
+ hps = utils.get_hparams_from_file(config_file)
427
+ text_mapper = TextForeign(vocab_file)
428
+ net_g = SynthesizerTrn(
429
+ len(text_mapper.symbols),
430
+ hps.data.filter_length // 2 + 1,
431
+ hps.train.segment_size // hps.data.hop_length,
432
+ **hps.model,
433
+ )
434
+ net_g.to(device)
435
+ _ = net_g.eval()
436
+
437
+ _ = utils.load_checkpoint(g_pth, net_g, None)
438
+
439
+ # TTS via MMS
440
+
441
+ is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
442
+
443
+ if is_uroman:
444
+ uroman_dir = "Utils/uroman"
445
+ assert os.path.exists(uroman_dir)
446
+ uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
447
+ text = text_mapper.uromanize(text, uroman_pl)
448
+
449
+ text = text.lower()
450
+ text = text_mapper.filter_oov(text, lang=lang)
451
+ stn_tst = text_mapper.get_text(text, hps)
452
+ with torch.no_grad():
453
+ print(f'{speed=}\n\n\n\n_______________________________')
454
+ x_tst = stn_tst.unsqueeze(0).to(device)
455
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
456
+ x = (
457
+ net_g.infer(
458
+ x_tst,
459
+ x_tst_lengths,
460
+ noise_scale=0.667,
461
+ noise_scale_w=0.8,
462
+ length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
463
+ )
464
+ x /= np.abs(x).max() + 1e-7
465
+
466
+ # hyp = (hyp * 32768).astype(np.int16)
467
+ # x = hyp #, text
468
+ print(x.shape, x.min(), x.max(), hps.data.sampling_rate) # (hps.data.sampling_rate,
469
+
470
+ x = audresample.resample(signal=x.astype(np.float32),
471
+ original_rate=16000,
472
+ target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
473
+ return x
474
+
475
+
476
+
477
+
478
+ # LANG = 'eng'
479
+ # _t = 'Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence'
480
+
481
+ # x = synthesize(text=_t, lang=LANG, speed=1.14)
482
+ # audiofile.write('_r.wav', x, 16000) # mms-tts = 16,000
tts.py CHANGED
@@ -2,6 +2,7 @@
2
  import numpy as np
3
  import argparse
4
  import os
 
5
  import requests
6
  from pathlib import Path
7
  Path('out/').mkdir(parents=True, exist_ok=True)
@@ -14,7 +15,10 @@ Path('out/').mkdir(parents=True, exist_ok=True)
14
  # ==
15
 
16
 
17
-
 
 
 
18
 
19
 
20
  def command_line_args():
@@ -67,13 +71,13 @@ def command_line_args():
67
  '--out_file',
68
  help="Output file name.",
69
  type=str,
70
- default='b6'
71
  )
72
  parser.add_argument(
73
- '--scene',
74
- help='Sound scene description.',
75
  type=str,
76
- default=None, #'calm background sounds of a castle'
77
  )
78
  return parser
79
 
@@ -87,7 +91,7 @@ def send_to_server(args):
87
  'text': args.text,
88
  'image': args.image,
89
  'video': args.video,
90
- 'scene': args.scene,
91
  # 'out_file': args.out_file # let serve save as temp
92
  }
93
 
@@ -123,7 +127,7 @@ def send_to_server(args):
123
 
124
  # --------------------- send this extra
125
 
126
- print('Sending...\n')
127
 
128
  response = requests.post(url, data=payload,
129
  files=[(args.text, text_file),
@@ -132,20 +136,24 @@ def send_to_server(args):
132
  (args.native, native_file)]) # NONEs do not arrive to servers dict
133
 
134
  # Check the response from the server
135
- if response.status_code == 200:
136
- print("\nRequest was successful!")
137
- # print("Response:", respdonse.__dict__.keys(), '\n=====\n')
138
-
139
- else:
140
- print("Failed to send the request")
141
- print("Status Code:", response.status_code)
142
- print("Response:", response.text)
143
  return response
144
 
145
 
146
  def cli():
147
  parser = command_line_args()
148
  args = parser.parse_args()
 
 
 
 
149
  response = send_to_server(args)
150
 
151
  with open(
@@ -154,7 +162,7 @@ def cli():
154
  'wb'
155
  ) as f:
156
  f.write(response.content)
157
- print('REsponse AT client []\n----------------------------', response.headers)
158
 
159
 
160
  if __name__ == '__main__':
 
2
  import numpy as np
3
  import argparse
4
  import os
5
+ import re
6
  import requests
7
  from pathlib import Path
8
  Path('out/').mkdir(parents=True, exist_ok=True)
 
15
  # ==
16
 
17
 
18
+ def alpha_num(f):
19
+ f = re.sub(' +', ' ', f) # delete spaces
20
+ f = re.sub(r'[^A-Za-z0-9 ]+', '', f) # del non alpha num
21
+ return f
22
 
23
 
24
  def command_line_args():
 
71
  '--out_file',
72
  help="Output file name.",
73
  type=str,
74
+ default=None
75
  )
76
  parser.add_argument(
77
+ '--speed',
78
+ help='speec of TTS (only used in Non English voices).',
79
  type=str,
80
+ default=1.24,
81
  )
82
  return parser
83
 
 
91
  'text': args.text,
92
  'image': args.image,
93
  'video': args.video,
94
+ 'speed': args.speed,
95
  # 'out_file': args.out_file # let serve save as temp
96
  }
97
 
 
127
 
128
  # --------------------- send this extra
129
 
130
+ # print('Sending...\n')
131
 
132
  response = requests.post(url, data=payload,
133
  files=[(args.text, text_file),
 
136
  (args.native, native_file)]) # NONEs do not arrive to servers dict
137
 
138
  # Check the response from the server
139
+ # if response.status_code == 200:
140
+ # print("\nRequest was successful!")
141
+ # # print("Response:", respdonse.__dict__.keys(), '\n=====\n')
142
+
143
+ # else:
144
+ # print("Failed to send the request")
145
+ # print("Status Code:", response.status_code)
146
+ # print("Response:", response.text)
147
  return response
148
 
149
 
150
  def cli():
151
  parser = command_line_args()
152
  args = parser.parse_args()
153
+
154
+ if args.out_file is None:
155
+ vid = alpha_num(args.video) if args.video else f'{np.random.rand()*1e7}'[:6]
156
+ args.out_file = alpha_num(args.text) + '_' + alpha_num(args.voice) + '_' + vid
157
  response = send_to_server(args)
158
 
159
  with open(
 
162
  'wb'
163
  ) as f:
164
  f.write(response.content)
165
+ # print('REsponse AT client []\n----------------------------', response.headers)
166
 
167
 
168
  if __name__ == '__main__':