foreign lang MMS TTS
Browse files- Modules/vits/.gitignore +11 -0
- Modules/vits/LICENSE +21 -0
- Modules/vits/README.md +58 -0
- Modules/vits/attentions.py +303 -0
- Modules/vits/commons.py +161 -0
- Modules/vits/data_utils.py +392 -0
- Modules/vits/losses.py +61 -0
- Modules/vits/mel_processing.py +112 -0
- Modules/vits/models.py +534 -0
- Modules/vits/modules.py +390 -0
- Modules/vits/monotonic_align/__init__.py +19 -0
- Modules/vits/monotonic_align/core.pyx +42 -0
- Modules/vits/monotonic_align/setup.py +9 -0
- Modules/vits/preprocess.py +25 -0
- Modules/vits/text/LICENSE +19 -0
- Modules/vits/text/__init__.py +54 -0
- Modules/vits/text/cleaners.py +100 -0
- Modules/vits/text/symbols.py +16 -0
- Modules/vits/transforms.py +193 -0
- Modules/vits/utils.py +258 -0
- Utils/Utils2/ASR/__init__.py +0 -1
- Utils/Utils2/ASR/config.yml +0 -29
- Utils/Utils2/ASR/epoch_00080.pth +0 -3
- Utils/Utils2/ASR/layers.py +0 -354
- Utils/Utils2/ASR/models.py +0 -186
- Utils/Utils2/JDC/__init__.py +0 -1
- Utils/Utils2/JDC/bst.pth +0 -3
- Utils/Utils2/JDC/model.py +0 -190
- Utils/Utils2/PLBERT/config.yml +0 -30
- Utils/Utils2/PLBERT/step_1000000.pth +0 -3
- Utils/Utils2/PLBERT/util.py +0 -42
- Utils/Utils2/config.yml +0 -21
- Utils/Utils2/engineer_style_vectors_v2.py +0 -331
- api.py +33 -25
- msinference.py +232 -11
- tts.py +24 -16
Modules/vits/.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DUMMY1
|
2 |
+
DUMMY2
|
3 |
+
DUMMY3
|
4 |
+
logs
|
5 |
+
__pycache__
|
6 |
+
.ipynb_checkpoints
|
7 |
+
.*.swp
|
8 |
+
|
9 |
+
build
|
10 |
+
*.c
|
11 |
+
monotonic_align/monotonic_align
|
Modules/vits/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Jaehyeon Kim
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
Modules/vits/README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
|
2 |
+
|
3 |
+
### Jaehyeon Kim, Jungil Kong, and Juhee Son
|
4 |
+
|
5 |
+
In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
|
6 |
+
|
7 |
+
Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
|
8 |
+
|
9 |
+
Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
|
10 |
+
|
11 |
+
We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
|
12 |
+
|
13 |
+
** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
|
14 |
+
|
15 |
+
<table style="width:100%">
|
16 |
+
<tr>
|
17 |
+
<th>VITS at training</th>
|
18 |
+
<th>VITS at inference</th>
|
19 |
+
</tr>
|
20 |
+
<tr>
|
21 |
+
<td><img src="resources/fig_1a.png" alt="VITS at training" height="400"></td>
|
22 |
+
<td><img src="resources/fig_1b.png" alt="VITS at inference" height="400"></td>
|
23 |
+
</tr>
|
24 |
+
</table>
|
25 |
+
|
26 |
+
|
27 |
+
## Pre-requisites
|
28 |
+
0. Python >= 3.6
|
29 |
+
0. Clone this repository
|
30 |
+
0. Install python requirements. Please refer [requirements.txt](requirements.txt)
|
31 |
+
1. You may need to install espeak first: `apt-get install espeak`
|
32 |
+
0. Download datasets
|
33 |
+
1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
|
34 |
+
1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
|
35 |
+
0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
|
36 |
+
```sh
|
37 |
+
# Cython-version Monotonoic Alignment Search
|
38 |
+
cd monotonic_align
|
39 |
+
python setup.py build_ext --inplace
|
40 |
+
|
41 |
+
# Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
|
42 |
+
# python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
|
43 |
+
# python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
|
47 |
+
## Training Exmaple
|
48 |
+
```sh
|
49 |
+
# LJ Speech
|
50 |
+
python train.py -c configs/ljs_base.json -m ljs_base
|
51 |
+
|
52 |
+
# VCTK
|
53 |
+
python train_ms.py -c configs/vctk_base.json -m vctk_base
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
## Inference Example
|
58 |
+
See [inference.ipynb](inference.ipynb)
|
Modules/vits/attentions.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
from modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.hidden_channels = hidden_channels
|
17 |
+
self.filter_channels = filter_channels
|
18 |
+
self.n_heads = n_heads
|
19 |
+
self.n_layers = n_layers
|
20 |
+
self.kernel_size = kernel_size
|
21 |
+
self.p_dropout = p_dropout
|
22 |
+
self.window_size = window_size
|
23 |
+
|
24 |
+
self.drop = nn.Dropout(p_dropout)
|
25 |
+
self.attn_layers = nn.ModuleList()
|
26 |
+
self.norm_layers_1 = nn.ModuleList()
|
27 |
+
self.ffn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_2 = nn.ModuleList()
|
29 |
+
for i in range(self.n_layers):
|
30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
+
|
35 |
+
def forward(self, x, x_mask):
|
36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
+
x = x * x_mask
|
38 |
+
for i in range(self.n_layers):
|
39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
+
y = self.drop(y)
|
41 |
+
x = self.norm_layers_1[i](x + y)
|
42 |
+
|
43 |
+
y = self.ffn_layers[i](x, x_mask)
|
44 |
+
y = self.drop(y)
|
45 |
+
x = self.norm_layers_2[i](x + y)
|
46 |
+
x = x * x_mask
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_channels = hidden_channels
|
54 |
+
self.filter_channels = filter_channels
|
55 |
+
self.n_heads = n_heads
|
56 |
+
self.n_layers = n_layers
|
57 |
+
self.kernel_size = kernel_size
|
58 |
+
self.p_dropout = p_dropout
|
59 |
+
self.proximal_bias = proximal_bias
|
60 |
+
self.proximal_init = proximal_init
|
61 |
+
|
62 |
+
self.drop = nn.Dropout(p_dropout)
|
63 |
+
self.self_attn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_0 = nn.ModuleList()
|
65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_1 = nn.ModuleList()
|
67 |
+
self.ffn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_2 = nn.ModuleList()
|
69 |
+
for i in range(self.n_layers):
|
70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
+
|
77 |
+
def forward(self, x, x_mask, h, h_mask):
|
78 |
+
"""
|
79 |
+
x: decoder input
|
80 |
+
h: encoder output
|
81 |
+
"""
|
82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
+
x = x * x_mask
|
85 |
+
for i in range(self.n_layers):
|
86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_0[i](x + y)
|
89 |
+
|
90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
+
y = self.drop(y)
|
92 |
+
x = self.norm_layers_1[i](x + y)
|
93 |
+
|
94 |
+
y = self.ffn_layers[i](x, x_mask)
|
95 |
+
y = self.drop(y)
|
96 |
+
x = self.norm_layers_2[i](x + y)
|
97 |
+
x = x * x_mask
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
class MultiHeadAttention(nn.Module):
|
102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
+
super().__init__()
|
104 |
+
assert channels % n_heads == 0
|
105 |
+
|
106 |
+
self.channels = channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.n_heads = n_heads
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.window_size = window_size
|
111 |
+
self.heads_share = heads_share
|
112 |
+
self.block_length = block_length
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
self.attn = None
|
116 |
+
|
117 |
+
self.k_channels = channels // n_heads
|
118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
+
self.drop = nn.Dropout(p_dropout)
|
123 |
+
|
124 |
+
if window_size is not None:
|
125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
126 |
+
rel_stddev = self.k_channels**-0.5
|
127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
+
|
130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
+
if proximal_init:
|
134 |
+
with torch.no_grad():
|
135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
+
|
138 |
+
def forward(self, x, c, attn_mask=None):
|
139 |
+
q = self.conv_q(x)
|
140 |
+
k = self.conv_k(c)
|
141 |
+
v = self.conv_v(c)
|
142 |
+
|
143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
+
|
145 |
+
x = self.conv_o(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def attention(self, query, key, value, mask=None):
|
149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
+
|
155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
+
if self.window_size is not None:
|
157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
+
scores = scores + scores_local
|
162 |
+
if self.proximal_bias:
|
163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
+
if mask is not None:
|
166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
+
if self.block_length is not None:
|
168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
+
p_attn = self.drop(p_attn)
|
173 |
+
output = torch.matmul(p_attn, value)
|
174 |
+
if self.window_size is not None:
|
175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
+
return output, p_attn
|
180 |
+
|
181 |
+
def _matmul_with_relative_values(self, x, y):
|
182 |
+
"""
|
183 |
+
x: [b, h, l, m]
|
184 |
+
y: [h or 1, m, d]
|
185 |
+
ret: [b, h, l, d]
|
186 |
+
"""
|
187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def _matmul_with_relative_keys(self, x, y):
|
191 |
+
"""
|
192 |
+
x: [b, h, l, d]
|
193 |
+
y: [h or 1, m, d]
|
194 |
+
ret: [b, h, l, m]
|
195 |
+
"""
|
196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
+
return ret
|
198 |
+
|
199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
+
max_relative_position = 2 * self.window_size + 1
|
201 |
+
# Pad first before slice to avoid using cond ops.
|
202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
+
if pad_length > 0:
|
206 |
+
padded_relative_embeddings = F.pad(
|
207 |
+
relative_embeddings,
|
208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
+
else:
|
210 |
+
padded_relative_embeddings = relative_embeddings
|
211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
+
return used_relative_embeddings
|
213 |
+
|
214 |
+
def _relative_position_to_absolute_position(self, x):
|
215 |
+
"""
|
216 |
+
x: [b, h, l, 2*l-1]
|
217 |
+
ret: [b, h, l, l]
|
218 |
+
"""
|
219 |
+
batch, heads, length, _ = x.size()
|
220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
+
|
223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
+
|
227 |
+
# Reshape and slice out the padded elements.
|
228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
+
return x_final
|
230 |
+
|
231 |
+
def _absolute_position_to_relative_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, l]
|
234 |
+
ret: [b, h, l, 2*l-1]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# padd along column
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
+
return x_final
|
244 |
+
|
245 |
+
def _attention_bias_proximal(self, length):
|
246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
247 |
+
Args:
|
248 |
+
length: an integer scalar.
|
249 |
+
Returns:
|
250 |
+
a Tensor with shape [1, 1, length, length]
|
251 |
+
"""
|
252 |
+
r = torch.arange(length, dtype=torch.float32)
|
253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
+
|
256 |
+
|
257 |
+
class FFN(nn.Module):
|
258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
+
super().__init__()
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.out_channels = out_channels
|
262 |
+
self.filter_channels = filter_channels
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.activation = activation
|
266 |
+
self.causal = causal
|
267 |
+
|
268 |
+
if causal:
|
269 |
+
self.padding = self._causal_padding
|
270 |
+
else:
|
271 |
+
self.padding = self._same_padding
|
272 |
+
|
273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
+
self.drop = nn.Dropout(p_dropout)
|
276 |
+
|
277 |
+
def forward(self, x, x_mask):
|
278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
279 |
+
if self.activation == "gelu":
|
280 |
+
x = x * torch.sigmoid(1.702 * x)
|
281 |
+
else:
|
282 |
+
x = torch.relu(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
285 |
+
return x * x_mask
|
286 |
+
|
287 |
+
def _causal_padding(self, x):
|
288 |
+
if self.kernel_size == 1:
|
289 |
+
return x
|
290 |
+
pad_l = self.kernel_size - 1
|
291 |
+
pad_r = 0
|
292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
+
return x
|
295 |
+
|
296 |
+
def _same_padding(self, x):
|
297 |
+
if self.kernel_size == 1:
|
298 |
+
return x
|
299 |
+
pad_l = (self.kernel_size - 1) // 2
|
300 |
+
pad_r = self.kernel_size // 2
|
301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
+
return x
|
Modules/vits/commons.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(
|
68 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
69 |
+
position = torch.arange(length, dtype=torch.float)
|
70 |
+
num_timescales = channels // 2
|
71 |
+
log_timescale_increment = (
|
72 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
73 |
+
(num_timescales - 1))
|
74 |
+
inv_timescales = min_timescale * torch.exp(
|
75 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
l = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in l for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
device = duration.device
|
134 |
+
|
135 |
+
b, _, t_y, t_x = mask.shape
|
136 |
+
cum_duration = torch.cumsum(duration, -1)
|
137 |
+
|
138 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
139 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
140 |
+
path = path.view(b, t_x, t_y)
|
141 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
142 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
143 |
+
return path
|
144 |
+
|
145 |
+
|
146 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
147 |
+
if isinstance(parameters, torch.Tensor):
|
148 |
+
parameters = [parameters]
|
149 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
150 |
+
norm_type = float(norm_type)
|
151 |
+
if clip_value is not None:
|
152 |
+
clip_value = float(clip_value)
|
153 |
+
|
154 |
+
total_norm = 0
|
155 |
+
for p in parameters:
|
156 |
+
param_norm = p.grad.data.norm(norm_type)
|
157 |
+
total_norm += param_norm.item() ** norm_type
|
158 |
+
if clip_value is not None:
|
159 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
160 |
+
total_norm = total_norm ** (1. / norm_type)
|
161 |
+
return total_norm
|
Modules/vits/data_utils.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
|
8 |
+
import commons
|
9 |
+
from mel_processing import spectrogram_torch
|
10 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
11 |
+
from text import text_to_sequence, cleaned_text_to_sequence
|
12 |
+
|
13 |
+
|
14 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
15 |
+
"""
|
16 |
+
1) loads audio, text pairs
|
17 |
+
2) normalizes text and converts them to sequences of integers
|
18 |
+
3) computes spectrograms from audio files.
|
19 |
+
"""
|
20 |
+
def __init__(self, audiopaths_and_text, hparams):
|
21 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
22 |
+
self.text_cleaners = hparams.text_cleaners
|
23 |
+
self.max_wav_value = hparams.max_wav_value
|
24 |
+
self.sampling_rate = hparams.sampling_rate
|
25 |
+
self.filter_length = hparams.filter_length
|
26 |
+
self.hop_length = hparams.hop_length
|
27 |
+
self.win_length = hparams.win_length
|
28 |
+
self.sampling_rate = hparams.sampling_rate
|
29 |
+
|
30 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
31 |
+
|
32 |
+
self.add_blank = hparams.add_blank
|
33 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
34 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
35 |
+
|
36 |
+
random.seed(1234)
|
37 |
+
random.shuffle(self.audiopaths_and_text)
|
38 |
+
self._filter()
|
39 |
+
|
40 |
+
|
41 |
+
def _filter(self):
|
42 |
+
"""
|
43 |
+
Filter text & store spec lengths
|
44 |
+
"""
|
45 |
+
# Store spectrogram lengths for Bucketing
|
46 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
47 |
+
# spec_length = wav_length // hop_length
|
48 |
+
|
49 |
+
audiopaths_and_text_new = []
|
50 |
+
lengths = []
|
51 |
+
for audiopath, text in self.audiopaths_and_text:
|
52 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
53 |
+
audiopaths_and_text_new.append([audiopath, text])
|
54 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
55 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
56 |
+
self.lengths = lengths
|
57 |
+
|
58 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
59 |
+
# separate filename and text
|
60 |
+
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
|
61 |
+
text = self.get_text(text)
|
62 |
+
spec, wav = self.get_audio(audiopath)
|
63 |
+
return (text, spec, wav)
|
64 |
+
|
65 |
+
def get_audio(self, filename):
|
66 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
67 |
+
if sampling_rate != self.sampling_rate:
|
68 |
+
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
69 |
+
sampling_rate, self.sampling_rate))
|
70 |
+
audio_norm = audio / self.max_wav_value
|
71 |
+
audio_norm = audio_norm.unsqueeze(0)
|
72 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
73 |
+
if os.path.exists(spec_filename):
|
74 |
+
spec = torch.load(spec_filename)
|
75 |
+
else:
|
76 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
77 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
78 |
+
center=False)
|
79 |
+
spec = torch.squeeze(spec, 0)
|
80 |
+
torch.save(spec, spec_filename)
|
81 |
+
return spec, audio_norm
|
82 |
+
|
83 |
+
def get_text(self, text):
|
84 |
+
if self.cleaned_text:
|
85 |
+
text_norm = cleaned_text_to_sequence(text)
|
86 |
+
else:
|
87 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
88 |
+
if self.add_blank:
|
89 |
+
text_norm = commons.intersperse(text_norm, 0)
|
90 |
+
text_norm = torch.LongTensor(text_norm)
|
91 |
+
return text_norm
|
92 |
+
|
93 |
+
def __getitem__(self, index):
|
94 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.audiopaths_and_text)
|
98 |
+
|
99 |
+
|
100 |
+
class TextAudioCollate():
|
101 |
+
""" Zero-pads model inputs and targets
|
102 |
+
"""
|
103 |
+
def __init__(self, return_ids=False):
|
104 |
+
self.return_ids = return_ids
|
105 |
+
|
106 |
+
def __call__(self, batch):
|
107 |
+
"""Collate's training batch from normalized text and aduio
|
108 |
+
PARAMS
|
109 |
+
------
|
110 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
111 |
+
"""
|
112 |
+
# Right zero-pad all one-hot text sequences to max input length
|
113 |
+
_, ids_sorted_decreasing = torch.sort(
|
114 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
115 |
+
dim=0, descending=True)
|
116 |
+
|
117 |
+
max_text_len = max([len(x[0]) for x in batch])
|
118 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
119 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
120 |
+
|
121 |
+
text_lengths = torch.LongTensor(len(batch))
|
122 |
+
spec_lengths = torch.LongTensor(len(batch))
|
123 |
+
wav_lengths = torch.LongTensor(len(batch))
|
124 |
+
|
125 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
126 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
127 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
128 |
+
text_padded.zero_()
|
129 |
+
spec_padded.zero_()
|
130 |
+
wav_padded.zero_()
|
131 |
+
for i in range(len(ids_sorted_decreasing)):
|
132 |
+
row = batch[ids_sorted_decreasing[i]]
|
133 |
+
|
134 |
+
text = row[0]
|
135 |
+
text_padded[i, :text.size(0)] = text
|
136 |
+
text_lengths[i] = text.size(0)
|
137 |
+
|
138 |
+
spec = row[1]
|
139 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
140 |
+
spec_lengths[i] = spec.size(1)
|
141 |
+
|
142 |
+
wav = row[2]
|
143 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
144 |
+
wav_lengths[i] = wav.size(1)
|
145 |
+
|
146 |
+
if self.return_ids:
|
147 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
|
148 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
|
149 |
+
|
150 |
+
|
151 |
+
"""Multi speaker version"""
|
152 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
153 |
+
"""
|
154 |
+
1) loads audio, speaker_id, text pairs
|
155 |
+
2) normalizes text and converts them to sequences of integers
|
156 |
+
3) computes spectrograms from audio files.
|
157 |
+
"""
|
158 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
159 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
160 |
+
self.text_cleaners = hparams.text_cleaners
|
161 |
+
self.max_wav_value = hparams.max_wav_value
|
162 |
+
self.sampling_rate = hparams.sampling_rate
|
163 |
+
self.filter_length = hparams.filter_length
|
164 |
+
self.hop_length = hparams.hop_length
|
165 |
+
self.win_length = hparams.win_length
|
166 |
+
self.sampling_rate = hparams.sampling_rate
|
167 |
+
|
168 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
169 |
+
|
170 |
+
self.add_blank = hparams.add_blank
|
171 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
172 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
173 |
+
|
174 |
+
random.seed(1234)
|
175 |
+
random.shuffle(self.audiopaths_sid_text)
|
176 |
+
self._filter()
|
177 |
+
|
178 |
+
def _filter(self):
|
179 |
+
"""
|
180 |
+
Filter text & store spec lengths
|
181 |
+
"""
|
182 |
+
# Store spectrogram lengths for Bucketing
|
183 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
184 |
+
# spec_length = wav_length // hop_length
|
185 |
+
|
186 |
+
audiopaths_sid_text_new = []
|
187 |
+
lengths = []
|
188 |
+
for audiopath, sid, text in self.audiopaths_sid_text:
|
189 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
190 |
+
audiopaths_sid_text_new.append([audiopath, sid, text])
|
191 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
192 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
193 |
+
self.lengths = lengths
|
194 |
+
|
195 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
196 |
+
# separate filename, speaker_id and text
|
197 |
+
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
198 |
+
text = self.get_text(text)
|
199 |
+
spec, wav = self.get_audio(audiopath)
|
200 |
+
sid = self.get_sid(sid)
|
201 |
+
return (text, spec, wav, sid)
|
202 |
+
|
203 |
+
def get_audio(self, filename):
|
204 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
205 |
+
if sampling_rate != self.sampling_rate:
|
206 |
+
raise ValueError("{} {} SR doesn't match target {} SR".format(
|
207 |
+
sampling_rate, self.sampling_rate))
|
208 |
+
audio_norm = audio / self.max_wav_value
|
209 |
+
audio_norm = audio_norm.unsqueeze(0)
|
210 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
211 |
+
if os.path.exists(spec_filename):
|
212 |
+
spec = torch.load(spec_filename)
|
213 |
+
else:
|
214 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
215 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
216 |
+
center=False)
|
217 |
+
spec = torch.squeeze(spec, 0)
|
218 |
+
torch.save(spec, spec_filename)
|
219 |
+
return spec, audio_norm
|
220 |
+
|
221 |
+
def get_text(self, text):
|
222 |
+
if self.cleaned_text:
|
223 |
+
text_norm = cleaned_text_to_sequence(text)
|
224 |
+
else:
|
225 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
226 |
+
if self.add_blank:
|
227 |
+
text_norm = commons.intersperse(text_norm, 0)
|
228 |
+
text_norm = torch.LongTensor(text_norm)
|
229 |
+
return text_norm
|
230 |
+
|
231 |
+
def get_sid(self, sid):
|
232 |
+
sid = torch.LongTensor([int(sid)])
|
233 |
+
return sid
|
234 |
+
|
235 |
+
def __getitem__(self, index):
|
236 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
237 |
+
|
238 |
+
def __len__(self):
|
239 |
+
return len(self.audiopaths_sid_text)
|
240 |
+
|
241 |
+
|
242 |
+
class TextAudioSpeakerCollate():
|
243 |
+
""" Zero-pads model inputs and targets
|
244 |
+
"""
|
245 |
+
def __init__(self, return_ids=False):
|
246 |
+
self.return_ids = return_ids
|
247 |
+
|
248 |
+
def __call__(self, batch):
|
249 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
250 |
+
PARAMS
|
251 |
+
------
|
252 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
253 |
+
"""
|
254 |
+
# Right zero-pad all one-hot text sequences to max input length
|
255 |
+
_, ids_sorted_decreasing = torch.sort(
|
256 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
257 |
+
dim=0, descending=True)
|
258 |
+
|
259 |
+
max_text_len = max([len(x[0]) for x in batch])
|
260 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
261 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
262 |
+
|
263 |
+
text_lengths = torch.LongTensor(len(batch))
|
264 |
+
spec_lengths = torch.LongTensor(len(batch))
|
265 |
+
wav_lengths = torch.LongTensor(len(batch))
|
266 |
+
sid = torch.LongTensor(len(batch))
|
267 |
+
|
268 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
269 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
270 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
271 |
+
text_padded.zero_()
|
272 |
+
spec_padded.zero_()
|
273 |
+
wav_padded.zero_()
|
274 |
+
for i in range(len(ids_sorted_decreasing)):
|
275 |
+
row = batch[ids_sorted_decreasing[i]]
|
276 |
+
|
277 |
+
text = row[0]
|
278 |
+
text_padded[i, :text.size(0)] = text
|
279 |
+
text_lengths[i] = text.size(0)
|
280 |
+
|
281 |
+
spec = row[1]
|
282 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
283 |
+
spec_lengths[i] = spec.size(1)
|
284 |
+
|
285 |
+
wav = row[2]
|
286 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
287 |
+
wav_lengths[i] = wav.size(1)
|
288 |
+
|
289 |
+
sid[i] = row[3]
|
290 |
+
|
291 |
+
if self.return_ids:
|
292 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
293 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
294 |
+
|
295 |
+
|
296 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
297 |
+
"""
|
298 |
+
Maintain similar input lengths in a batch.
|
299 |
+
Length groups are specified by boundaries.
|
300 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
301 |
+
|
302 |
+
It removes samples which are not included in the boundaries.
|
303 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
304 |
+
"""
|
305 |
+
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
306 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
307 |
+
self.lengths = dataset.lengths
|
308 |
+
self.batch_size = batch_size
|
309 |
+
self.boundaries = boundaries
|
310 |
+
|
311 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
312 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
313 |
+
self.num_samples = self.total_size // self.num_replicas
|
314 |
+
|
315 |
+
def _create_buckets(self):
|
316 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
317 |
+
for i in range(len(self.lengths)):
|
318 |
+
length = self.lengths[i]
|
319 |
+
idx_bucket = self._bisect(length)
|
320 |
+
if idx_bucket != -1:
|
321 |
+
buckets[idx_bucket].append(i)
|
322 |
+
|
323 |
+
for i in range(len(buckets) - 1, 0, -1):
|
324 |
+
if len(buckets[i]) == 0:
|
325 |
+
buckets.pop(i)
|
326 |
+
self.boundaries.pop(i+1)
|
327 |
+
|
328 |
+
num_samples_per_bucket = []
|
329 |
+
for i in range(len(buckets)):
|
330 |
+
len_bucket = len(buckets[i])
|
331 |
+
total_batch_size = self.num_replicas * self.batch_size
|
332 |
+
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
333 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
334 |
+
return buckets, num_samples_per_bucket
|
335 |
+
|
336 |
+
def __iter__(self):
|
337 |
+
# deterministically shuffle based on epoch
|
338 |
+
g = torch.Generator()
|
339 |
+
g.manual_seed(self.epoch)
|
340 |
+
|
341 |
+
indices = []
|
342 |
+
if self.shuffle:
|
343 |
+
for bucket in self.buckets:
|
344 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
345 |
+
else:
|
346 |
+
for bucket in self.buckets:
|
347 |
+
indices.append(list(range(len(bucket))))
|
348 |
+
|
349 |
+
batches = []
|
350 |
+
for i in range(len(self.buckets)):
|
351 |
+
bucket = self.buckets[i]
|
352 |
+
len_bucket = len(bucket)
|
353 |
+
ids_bucket = indices[i]
|
354 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
355 |
+
|
356 |
+
# add extra samples to make it evenly divisible
|
357 |
+
rem = num_samples_bucket - len_bucket
|
358 |
+
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
359 |
+
|
360 |
+
# subsample
|
361 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
362 |
+
|
363 |
+
# batching
|
364 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
365 |
+
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
366 |
+
batches.append(batch)
|
367 |
+
|
368 |
+
if self.shuffle:
|
369 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
370 |
+
batches = [batches[i] for i in batch_ids]
|
371 |
+
self.batches = batches
|
372 |
+
|
373 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
374 |
+
return iter(self.batches)
|
375 |
+
|
376 |
+
def _bisect(self, x, lo=0, hi=None):
|
377 |
+
if hi is None:
|
378 |
+
hi = len(self.boundaries) - 1
|
379 |
+
|
380 |
+
if hi > lo:
|
381 |
+
mid = (hi + lo) // 2
|
382 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
383 |
+
return mid
|
384 |
+
elif x <= self.boundaries[mid]:
|
385 |
+
return self._bisect(x, lo, mid)
|
386 |
+
else:
|
387 |
+
return self._bisect(x, mid + 1, hi)
|
388 |
+
else:
|
389 |
+
return -1
|
390 |
+
|
391 |
+
def __len__(self):
|
392 |
+
return self.num_samples // self.batch_size
|
Modules/vits/losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
Modules/vits/mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
Modules/vits/models.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
+
x = torch.detach(x)
|
52 |
+
x = self.pre(x)
|
53 |
+
if g is not None:
|
54 |
+
g = torch.detach(g)
|
55 |
+
x = x + self.cond(g)
|
56 |
+
x = self.convs(x, x_mask)
|
57 |
+
x = self.proj(x) * x_mask
|
58 |
+
|
59 |
+
if not reverse:
|
60 |
+
flows = self.flows
|
61 |
+
assert w is not None
|
62 |
+
|
63 |
+
logdet_tot_q = 0
|
64 |
+
h_w = self.post_pre(w)
|
65 |
+
h_w = self.post_convs(h_w, x_mask)
|
66 |
+
h_w = self.post_proj(h_w) * x_mask
|
67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
+
z_q = e_q
|
69 |
+
for flow in self.post_flows:
|
70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
+
logdet_tot_q += logdet_q
|
72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
+
u = torch.sigmoid(z_u) * x_mask
|
74 |
+
z0 = (w - u) * x_mask
|
75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
+
|
78 |
+
logdet_tot = 0
|
79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
+
logdet_tot += logdet
|
81 |
+
z = torch.cat([z0, z1], 1)
|
82 |
+
for flow in flows:
|
83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
+
logdet_tot = logdet_tot + logdet
|
85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
+
return nll + logq # [b]
|
87 |
+
else:
|
88 |
+
flows = list(reversed(self.flows))
|
89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
+
for flow in flows:
|
92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
+
logw = z0
|
95 |
+
return logw
|
96 |
+
|
97 |
+
|
98 |
+
class DurationPredictor(nn.Module):
|
99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.in_channels = in_channels
|
103 |
+
self.filter_channels = filter_channels
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = p_dropout
|
106 |
+
self.gin_channels = gin_channels
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
+
|
115 |
+
if gin_channels != 0:
|
116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
x = torch.detach(x)
|
120 |
+
if g is not None:
|
121 |
+
g = torch.detach(g)
|
122 |
+
x = x + self.cond(g)
|
123 |
+
x = self.conv_1(x * x_mask)
|
124 |
+
x = torch.relu(x)
|
125 |
+
x = self.norm_1(x)
|
126 |
+
x = self.drop(x)
|
127 |
+
x = self.conv_2(x * x_mask)
|
128 |
+
x = torch.relu(x)
|
129 |
+
x = self.norm_2(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.proj(x * x_mask)
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class TextEncoder(nn.Module):
|
136 |
+
def __init__(self,
|
137 |
+
n_vocab,
|
138 |
+
out_channels,
|
139 |
+
hidden_channels,
|
140 |
+
filter_channels,
|
141 |
+
n_heads,
|
142 |
+
n_layers,
|
143 |
+
kernel_size,
|
144 |
+
p_dropout):
|
145 |
+
super().__init__()
|
146 |
+
self.n_vocab = n_vocab
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.filter_channels = filter_channels
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.kernel_size = kernel_size
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
+
self.flows.append(modules.Flip())
|
201 |
+
|
202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
+
if not reverse:
|
204 |
+
for flow in self.flows:
|
205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
+
else:
|
207 |
+
for flow in reversed(self.flows):
|
208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class PosteriorEncoder(nn.Module):
|
213 |
+
def __init__(self,
|
214 |
+
in_channels,
|
215 |
+
out_channels,
|
216 |
+
hidden_channels,
|
217 |
+
kernel_size,
|
218 |
+
dilation_rate,
|
219 |
+
n_layers,
|
220 |
+
gin_channels=0):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.hidden_channels = hidden_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.dilation_rate = dilation_rate
|
227 |
+
self.n_layers = n_layers
|
228 |
+
self.gin_channels = gin_channels
|
229 |
+
|
230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
+
|
234 |
+
def forward(self, x, x_lengths, g=None):
|
235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
+
x = self.pre(x) * x_mask
|
237 |
+
x = self.enc(x, x_mask, g=g)
|
238 |
+
stats = self.proj(x) * x_mask
|
239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
+
return z, m, logs, x_mask
|
242 |
+
|
243 |
+
|
244 |
+
class Generator(torch.nn.Module):
|
245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
+
super(Generator, self).__init__()
|
247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
+
self.num_upsamples = len(upsample_rates)
|
249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
+
|
252 |
+
self.ups = nn.ModuleList()
|
253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
+
self.ups.append(weight_norm(
|
255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
+
k, u, padding=(k-u)//2)))
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
+
self.resblocks.append(resblock(ch, k, d))
|
263 |
+
|
264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
+
self.ups.apply(init_weights)
|
266 |
+
|
267 |
+
if gin_channels != 0:
|
268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
+
|
270 |
+
def forward(self, x, g=None):
|
271 |
+
x = self.conv_pre(x)
|
272 |
+
if g is not None:
|
273 |
+
x = x + self.cond(g)
|
274 |
+
|
275 |
+
for i in range(self.num_upsamples):
|
276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
+
x = self.ups[i](x)
|
278 |
+
xs = None
|
279 |
+
for j in range(self.num_kernels):
|
280 |
+
if xs is None:
|
281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
else:
|
283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
+
x = xs / self.num_kernels
|
285 |
+
x = F.leaky_relu(x)
|
286 |
+
x = self.conv_post(x)
|
287 |
+
x = torch.tanh(x)
|
288 |
+
|
289 |
+
return x
|
290 |
+
|
291 |
+
def remove_weight_norm(self):
|
292 |
+
print('Removing weight norm...')
|
293 |
+
for l in self.ups:
|
294 |
+
remove_weight_norm(l)
|
295 |
+
for l in self.resblocks:
|
296 |
+
l.remove_weight_norm()
|
297 |
+
|
298 |
+
|
299 |
+
class DiscriminatorP(torch.nn.Module):
|
300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
+
super(DiscriminatorP, self).__init__()
|
302 |
+
self.period = period
|
303 |
+
self.use_spectral_norm = use_spectral_norm
|
304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
+
self.convs = nn.ModuleList([
|
306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
])
|
312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
fmap = []
|
316 |
+
|
317 |
+
# 1d to 2d
|
318 |
+
b, c, t = x.shape
|
319 |
+
if t % self.period != 0: # pad first
|
320 |
+
n_pad = self.period - (t % self.period)
|
321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
+
t = t + n_pad
|
323 |
+
x = x.view(b, c, t // self.period, self.period)
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class DiscriminatorS(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(DiscriminatorS, self).__init__()
|
339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
+
self.convs = nn.ModuleList([
|
341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
+
])
|
348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
fmap = []
|
352 |
+
|
353 |
+
for l in self.convs:
|
354 |
+
x = l(x)
|
355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
+
fmap.append(x)
|
357 |
+
x = self.conv_post(x)
|
358 |
+
fmap.append(x)
|
359 |
+
x = torch.flatten(x, 1, -1)
|
360 |
+
|
361 |
+
return x, fmap
|
362 |
+
|
363 |
+
|
364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
+
def __init__(self, use_spectral_norm=False):
|
366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
+
periods = [2,3,5,7,11]
|
368 |
+
|
369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
+
self.discriminators = nn.ModuleList(discs)
|
372 |
+
|
373 |
+
def forward(self, y, y_hat):
|
374 |
+
y_d_rs = []
|
375 |
+
y_d_gs = []
|
376 |
+
fmap_rs = []
|
377 |
+
fmap_gs = []
|
378 |
+
for i, d in enumerate(self.discriminators):
|
379 |
+
y_d_r, fmap_r = d(y)
|
380 |
+
y_d_g, fmap_g = d(y_hat)
|
381 |
+
y_d_rs.append(y_d_r)
|
382 |
+
y_d_gs.append(y_d_g)
|
383 |
+
fmap_rs.append(fmap_r)
|
384 |
+
fmap_gs.append(fmap_g)
|
385 |
+
|
386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
class SynthesizerTrn(nn.Module):
|
391 |
+
"""
|
392 |
+
Synthesizer for Training
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self,
|
396 |
+
n_vocab,
|
397 |
+
spec_channels,
|
398 |
+
segment_size,
|
399 |
+
inter_channels,
|
400 |
+
hidden_channels,
|
401 |
+
filter_channels,
|
402 |
+
n_heads,
|
403 |
+
n_layers,
|
404 |
+
kernel_size,
|
405 |
+
p_dropout,
|
406 |
+
resblock,
|
407 |
+
resblock_kernel_sizes,
|
408 |
+
resblock_dilation_sizes,
|
409 |
+
upsample_rates,
|
410 |
+
upsample_initial_channel,
|
411 |
+
upsample_kernel_sizes,
|
412 |
+
n_speakers=0,
|
413 |
+
gin_channels=0,
|
414 |
+
use_sdp=True,
|
415 |
+
**kwargs):
|
416 |
+
|
417 |
+
super().__init__()
|
418 |
+
self.n_vocab = n_vocab
|
419 |
+
self.spec_channels = spec_channels
|
420 |
+
self.inter_channels = inter_channels
|
421 |
+
self.hidden_channels = hidden_channels
|
422 |
+
self.filter_channels = filter_channels
|
423 |
+
self.n_heads = n_heads
|
424 |
+
self.n_layers = n_layers
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.resblock = resblock
|
428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
+
self.upsample_rates = upsample_rates
|
431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
+
self.segment_size = segment_size
|
434 |
+
self.n_speakers = n_speakers
|
435 |
+
self.gin_channels = gin_channels
|
436 |
+
|
437 |
+
self.use_sdp = use_sdp
|
438 |
+
|
439 |
+
self.enc_p = TextEncoder(n_vocab,
|
440 |
+
inter_channels,
|
441 |
+
hidden_channels,
|
442 |
+
filter_channels,
|
443 |
+
n_heads,
|
444 |
+
n_layers,
|
445 |
+
kernel_size,
|
446 |
+
p_dropout)
|
447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
+
|
451 |
+
if use_sdp:
|
452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
+
else:
|
454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
+
|
456 |
+
if n_speakers > 1:
|
457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
+
|
461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
+
if self.n_speakers > 0:
|
463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
+
else:
|
465 |
+
g = None
|
466 |
+
|
467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
+
z_p = self.flow(z, y_mask, g=g)
|
469 |
+
|
470 |
+
with torch.no_grad():
|
471 |
+
# negative cross-entropy
|
472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
+
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
+
|
482 |
+
w = attn.sum(2)
|
483 |
+
if self.use_sdp:
|
484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
+
l_length = l_length / torch.sum(x_mask)
|
486 |
+
else:
|
487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
+
logw = self.dp(x, x_mask, g=g)
|
489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
+
|
491 |
+
# expand prior
|
492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
+
o = self.dec(z_slice, g=g)
|
497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
+
|
499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
+
if self.n_speakers > 0:
|
502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
+
else:
|
504 |
+
g = None
|
505 |
+
|
506 |
+
if self.use_sdp:
|
507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
+
else:
|
509 |
+
logw = self.dp(x, x_mask, g=g)
|
510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
511 |
+
w_ceil = torch.ceil(w)
|
512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
+
|
517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
|
520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
+
|
525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
534 |
+
|
Modules/vits/modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
Modules/vits/monotonic_align/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from .monotonic_align.core import maximum_path_c
|
4 |
+
|
5 |
+
|
6 |
+
def maximum_path(neg_cent, mask):
|
7 |
+
""" Cython optimized version.
|
8 |
+
neg_cent: [b, t_t, t_s]
|
9 |
+
mask: [b, t_t, t_s]
|
10 |
+
"""
|
11 |
+
device = neg_cent.device
|
12 |
+
dtype = neg_cent.dtype
|
13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
+
|
16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
Modules/vits/monotonic_align/core.pyx
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport cython
|
2 |
+
from cython.parallel import prange
|
3 |
+
|
4 |
+
|
5 |
+
@cython.boundscheck(False)
|
6 |
+
@cython.wraparound(False)
|
7 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
+
cdef int x
|
9 |
+
cdef int y
|
10 |
+
cdef float v_prev
|
11 |
+
cdef float v_cur
|
12 |
+
cdef float tmp
|
13 |
+
cdef int index = t_x - 1
|
14 |
+
|
15 |
+
for y in range(t_y):
|
16 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
+
if x == y:
|
18 |
+
v_cur = max_neg_val
|
19 |
+
else:
|
20 |
+
v_cur = value[y-1, x]
|
21 |
+
if x == 0:
|
22 |
+
if y == 0:
|
23 |
+
v_prev = 0.
|
24 |
+
else:
|
25 |
+
v_prev = max_neg_val
|
26 |
+
else:
|
27 |
+
v_prev = value[y-1, x-1]
|
28 |
+
value[y, x] += max(v_prev, v_cur)
|
29 |
+
|
30 |
+
for y in range(t_y - 1, -1, -1):
|
31 |
+
path[y, index] = 1
|
32 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
+
index = index - 1
|
34 |
+
|
35 |
+
|
36 |
+
@cython.boundscheck(False)
|
37 |
+
@cython.wraparound(False)
|
38 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
+
cdef int b = paths.shape[0]
|
40 |
+
cdef int i
|
41 |
+
for i in prange(b, nogil=True):
|
42 |
+
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
Modules/vits/monotonic_align/setup.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.core import setup
|
2 |
+
from Cython.Build import cythonize
|
3 |
+
import numpy
|
4 |
+
|
5 |
+
setup(
|
6 |
+
name = 'monotonic_align',
|
7 |
+
ext_modules = cythonize("core.pyx"),
|
8 |
+
include_dirs=[numpy.get_include()]
|
9 |
+
)
|
Modules/vits/preprocess.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import text
|
3 |
+
from utils import load_filepaths_and_text
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--out_extension", default="cleaned")
|
8 |
+
parser.add_argument("--text_index", default=1, type=int)
|
9 |
+
parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
|
10 |
+
parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
|
11 |
+
|
12 |
+
args = parser.parse_args()
|
13 |
+
|
14 |
+
|
15 |
+
for filelist in args.filelists:
|
16 |
+
print("START:", filelist)
|
17 |
+
filepaths_and_text = load_filepaths_and_text(filelist)
|
18 |
+
for i in range(len(filepaths_and_text)):
|
19 |
+
original_text = filepaths_and_text[i][args.text_index]
|
20 |
+
cleaned_text = text._clean_text(original_text, args.text_cleaners)
|
21 |
+
filepaths_and_text[i][args.text_index] = cleaned_text
|
22 |
+
|
23 |
+
new_filelist = filelist + "." + args.out_extension
|
24 |
+
with open(new_filelist, "w", encoding="utf-8") as f:
|
25 |
+
f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
|
Modules/vits/text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
Modules/vits/text/__init__.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
+
|
5 |
+
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, cleaner_names):
|
12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
+
Args:
|
14 |
+
text: string to convert to a sequence
|
15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
16 |
+
Returns:
|
17 |
+
List of integers corresponding to the symbols in the text
|
18 |
+
'''
|
19 |
+
sequence = []
|
20 |
+
|
21 |
+
clean_text = _clean_text(text, cleaner_names)
|
22 |
+
for symbol in clean_text:
|
23 |
+
symbol_id = _symbol_to_id[symbol]
|
24 |
+
sequence += [symbol_id]
|
25 |
+
return sequence
|
26 |
+
|
27 |
+
|
28 |
+
def cleaned_text_to_sequence(cleaned_text):
|
29 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
30 |
+
Args:
|
31 |
+
text: string to convert to a sequence
|
32 |
+
Returns:
|
33 |
+
List of integers corresponding to the symbols in the text
|
34 |
+
'''
|
35 |
+
sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
36 |
+
return sequence
|
37 |
+
|
38 |
+
|
39 |
+
def sequence_to_text(sequence):
|
40 |
+
'''Converts a sequence of IDs back to a string'''
|
41 |
+
result = ''
|
42 |
+
for symbol_id in sequence:
|
43 |
+
s = _id_to_symbol[symbol_id]
|
44 |
+
result += s
|
45 |
+
return result
|
46 |
+
|
47 |
+
|
48 |
+
def _clean_text(text, cleaner_names):
|
49 |
+
for name in cleaner_names:
|
50 |
+
cleaner = getattr(cleaners, name)
|
51 |
+
if not cleaner:
|
52 |
+
raise Exception('Unknown cleaner: %s' % name)
|
53 |
+
text = cleaner(text)
|
54 |
+
return text
|
Modules/vits/text/cleaners.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
'''
|
4 |
+
Cleaners are transformations that run over the input text at both training and eval time.
|
5 |
+
|
6 |
+
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
7 |
+
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
8 |
+
1. "english_cleaners" for English text
|
9 |
+
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
10 |
+
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
11 |
+
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
12 |
+
the symbols in symbols.py to match your data).
|
13 |
+
'''
|
14 |
+
|
15 |
+
import re
|
16 |
+
from unidecode import unidecode
|
17 |
+
from phonemizer import phonemize
|
18 |
+
|
19 |
+
|
20 |
+
# Regular expression matching whitespace:
|
21 |
+
_whitespace_re = re.compile(r'\s+')
|
22 |
+
|
23 |
+
# List of (regular expression, replacement) pairs for abbreviations:
|
24 |
+
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
|
25 |
+
('mrs', 'misess'),
|
26 |
+
('mr', 'mister'),
|
27 |
+
('dr', 'doctor'),
|
28 |
+
('st', 'saint'),
|
29 |
+
('co', 'company'),
|
30 |
+
('jr', 'junior'),
|
31 |
+
('maj', 'major'),
|
32 |
+
('gen', 'general'),
|
33 |
+
('drs', 'doctors'),
|
34 |
+
('rev', 'reverend'),
|
35 |
+
('lt', 'lieutenant'),
|
36 |
+
('hon', 'honorable'),
|
37 |
+
('sgt', 'sergeant'),
|
38 |
+
('capt', 'captain'),
|
39 |
+
('esq', 'esquire'),
|
40 |
+
('ltd', 'limited'),
|
41 |
+
('col', 'colonel'),
|
42 |
+
('ft', 'fort'),
|
43 |
+
]]
|
44 |
+
|
45 |
+
|
46 |
+
def expand_abbreviations(text):
|
47 |
+
for regex, replacement in _abbreviations:
|
48 |
+
text = re.sub(regex, replacement, text)
|
49 |
+
return text
|
50 |
+
|
51 |
+
|
52 |
+
def expand_numbers(text):
|
53 |
+
return normalize_numbers(text)
|
54 |
+
|
55 |
+
|
56 |
+
def lowercase(text):
|
57 |
+
return text.lower()
|
58 |
+
|
59 |
+
|
60 |
+
def collapse_whitespace(text):
|
61 |
+
return re.sub(_whitespace_re, ' ', text)
|
62 |
+
|
63 |
+
|
64 |
+
def convert_to_ascii(text):
|
65 |
+
return unidecode(text)
|
66 |
+
|
67 |
+
|
68 |
+
def basic_cleaners(text):
|
69 |
+
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
70 |
+
text = lowercase(text)
|
71 |
+
text = collapse_whitespace(text)
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
def transliteration_cleaners(text):
|
76 |
+
'''Pipeline for non-English text that transliterates to ASCII.'''
|
77 |
+
text = convert_to_ascii(text)
|
78 |
+
text = lowercase(text)
|
79 |
+
text = collapse_whitespace(text)
|
80 |
+
return text
|
81 |
+
|
82 |
+
|
83 |
+
def english_cleaners(text):
|
84 |
+
'''Pipeline for English text, including abbreviation expansion.'''
|
85 |
+
text = convert_to_ascii(text)
|
86 |
+
text = lowercase(text)
|
87 |
+
text = expand_abbreviations(text)
|
88 |
+
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
|
89 |
+
phonemes = collapse_whitespace(phonemes)
|
90 |
+
return phonemes
|
91 |
+
|
92 |
+
|
93 |
+
def english_cleaners2(text):
|
94 |
+
'''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
|
95 |
+
text = convert_to_ascii(text)
|
96 |
+
text = lowercase(text)
|
97 |
+
text = expand_abbreviations(text)
|
98 |
+
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
|
99 |
+
phonemes = collapse_whitespace(phonemes)
|
100 |
+
return phonemes
|
Modules/vits/text/symbols.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
|
3 |
+
'''
|
4 |
+
Defines the set of symbols used in text input to the model.
|
5 |
+
'''
|
6 |
+
_pad = '_'
|
7 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
8 |
+
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
9 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
10 |
+
|
11 |
+
|
12 |
+
# Export all symbols:
|
13 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
14 |
+
|
15 |
+
# Special symbol ids
|
16 |
+
SPACE_ID = symbols.index(" ")
|
Modules/vits/transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
Modules/vits/utils.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import logging
|
6 |
+
import json
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from scipy.io.wavfile import read
|
10 |
+
import torch
|
11 |
+
|
12 |
+
MATPLOTLIB_FLAG = False
|
13 |
+
|
14 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
15 |
+
logger = logging
|
16 |
+
|
17 |
+
|
18 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
19 |
+
assert os.path.isfile(checkpoint_path)
|
20 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
21 |
+
iteration = checkpoint_dict['iteration']
|
22 |
+
learning_rate = checkpoint_dict['learning_rate']
|
23 |
+
if optimizer is not None:
|
24 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
25 |
+
saved_state_dict = checkpoint_dict['model']
|
26 |
+
if hasattr(model, 'module'):
|
27 |
+
state_dict = model.module.state_dict()
|
28 |
+
else:
|
29 |
+
state_dict = model.state_dict()
|
30 |
+
new_state_dict= {}
|
31 |
+
for k, v in state_dict.items():
|
32 |
+
try:
|
33 |
+
new_state_dict[k] = saved_state_dict[k]
|
34 |
+
except:
|
35 |
+
logger.info("%s is not in the checkpoint" % k)
|
36 |
+
new_state_dict[k] = v
|
37 |
+
if hasattr(model, 'module'):
|
38 |
+
model.module.load_state_dict(new_state_dict)
|
39 |
+
else:
|
40 |
+
model.load_state_dict(new_state_dict)
|
41 |
+
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
42 |
+
checkpoint_path, iteration))
|
43 |
+
return model, optimizer, learning_rate, iteration
|
44 |
+
|
45 |
+
|
46 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
47 |
+
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
48 |
+
iteration, checkpoint_path))
|
49 |
+
if hasattr(model, 'module'):
|
50 |
+
state_dict = model.module.state_dict()
|
51 |
+
else:
|
52 |
+
state_dict = model.state_dict()
|
53 |
+
torch.save({'model': state_dict,
|
54 |
+
'iteration': iteration,
|
55 |
+
'optimizer': optimizer.state_dict(),
|
56 |
+
'learning_rate': learning_rate}, checkpoint_path)
|
57 |
+
|
58 |
+
|
59 |
+
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
60 |
+
for k, v in scalars.items():
|
61 |
+
writer.add_scalar(k, v, global_step)
|
62 |
+
for k, v in histograms.items():
|
63 |
+
writer.add_histogram(k, v, global_step)
|
64 |
+
for k, v in images.items():
|
65 |
+
writer.add_image(k, v, global_step, dataformats='HWC')
|
66 |
+
for k, v in audios.items():
|
67 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
68 |
+
|
69 |
+
|
70 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
71 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
72 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
73 |
+
x = f_list[-1]
|
74 |
+
print(x)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
79 |
+
global MATPLOTLIB_FLAG
|
80 |
+
if not MATPLOTLIB_FLAG:
|
81 |
+
import matplotlib
|
82 |
+
matplotlib.use("Agg")
|
83 |
+
MATPLOTLIB_FLAG = True
|
84 |
+
mpl_logger = logging.getLogger('matplotlib')
|
85 |
+
mpl_logger.setLevel(logging.WARNING)
|
86 |
+
import matplotlib.pylab as plt
|
87 |
+
import numpy as np
|
88 |
+
|
89 |
+
fig, ax = plt.subplots(figsize=(10,2))
|
90 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
91 |
+
interpolation='none')
|
92 |
+
plt.colorbar(im, ax=ax)
|
93 |
+
plt.xlabel("Frames")
|
94 |
+
plt.ylabel("Channels")
|
95 |
+
plt.tight_layout()
|
96 |
+
|
97 |
+
fig.canvas.draw()
|
98 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
99 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
100 |
+
plt.close()
|
101 |
+
return data
|
102 |
+
|
103 |
+
|
104 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
105 |
+
global MATPLOTLIB_FLAG
|
106 |
+
if not MATPLOTLIB_FLAG:
|
107 |
+
import matplotlib
|
108 |
+
matplotlib.use("Agg")
|
109 |
+
MATPLOTLIB_FLAG = True
|
110 |
+
mpl_logger = logging.getLogger('matplotlib')
|
111 |
+
mpl_logger.setLevel(logging.WARNING)
|
112 |
+
import matplotlib.pylab as plt
|
113 |
+
import numpy as np
|
114 |
+
|
115 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
116 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
117 |
+
interpolation='none')
|
118 |
+
fig.colorbar(im, ax=ax)
|
119 |
+
xlabel = 'Decoder timestep'
|
120 |
+
if info is not None:
|
121 |
+
xlabel += '\n\n' + info
|
122 |
+
plt.xlabel(xlabel)
|
123 |
+
plt.ylabel('Encoder timestep')
|
124 |
+
plt.tight_layout()
|
125 |
+
|
126 |
+
fig.canvas.draw()
|
127 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
128 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
129 |
+
plt.close()
|
130 |
+
return data
|
131 |
+
|
132 |
+
|
133 |
+
def load_wav_to_torch(full_path):
|
134 |
+
sampling_rate, data = read(full_path)
|
135 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
136 |
+
|
137 |
+
|
138 |
+
def load_filepaths_and_text(filename, split="|"):
|
139 |
+
with open(filename, encoding='utf-8') as f:
|
140 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
141 |
+
return filepaths_and_text
|
142 |
+
|
143 |
+
|
144 |
+
def get_hparams(init=True):
|
145 |
+
parser = argparse.ArgumentParser()
|
146 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
147 |
+
help='JSON file for configuration')
|
148 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
149 |
+
help='Model name')
|
150 |
+
|
151 |
+
args = parser.parse_args()
|
152 |
+
model_dir = os.path.join("./logs", args.model)
|
153 |
+
|
154 |
+
if not os.path.exists(model_dir):
|
155 |
+
os.makedirs(model_dir)
|
156 |
+
|
157 |
+
config_path = args.config
|
158 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
159 |
+
if init:
|
160 |
+
with open(config_path, "r") as f:
|
161 |
+
data = f.read()
|
162 |
+
with open(config_save_path, "w") as f:
|
163 |
+
f.write(data)
|
164 |
+
else:
|
165 |
+
with open(config_save_path, "r") as f:
|
166 |
+
data = f.read()
|
167 |
+
config = json.loads(data)
|
168 |
+
|
169 |
+
hparams = HParams(**config)
|
170 |
+
hparams.model_dir = model_dir
|
171 |
+
return hparams
|
172 |
+
|
173 |
+
|
174 |
+
def get_hparams_from_dir(model_dir):
|
175 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
176 |
+
with open(config_save_path, "r") as f:
|
177 |
+
data = f.read()
|
178 |
+
config = json.loads(data)
|
179 |
+
|
180 |
+
hparams =HParams(**config)
|
181 |
+
hparams.model_dir = model_dir
|
182 |
+
return hparams
|
183 |
+
|
184 |
+
|
185 |
+
def get_hparams_from_file(config_path):
|
186 |
+
with open(config_path, "r") as f:
|
187 |
+
data = f.read()
|
188 |
+
config = json.loads(data)
|
189 |
+
|
190 |
+
hparams =HParams(**config)
|
191 |
+
return hparams
|
192 |
+
|
193 |
+
|
194 |
+
def check_git_hash(model_dir):
|
195 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
196 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
197 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
198 |
+
source_dir
|
199 |
+
))
|
200 |
+
return
|
201 |
+
|
202 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
203 |
+
|
204 |
+
path = os.path.join(model_dir, "githash")
|
205 |
+
if os.path.exists(path):
|
206 |
+
saved_hash = open(path).read()
|
207 |
+
if saved_hash != cur_hash:
|
208 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
209 |
+
saved_hash[:8], cur_hash[:8]))
|
210 |
+
else:
|
211 |
+
open(path, "w").write(cur_hash)
|
212 |
+
|
213 |
+
|
214 |
+
def get_logger(model_dir, filename="train.log"):
|
215 |
+
global logger
|
216 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
217 |
+
logger.setLevel(logging.DEBUG)
|
218 |
+
|
219 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
220 |
+
if not os.path.exists(model_dir):
|
221 |
+
os.makedirs(model_dir)
|
222 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
223 |
+
h.setLevel(logging.DEBUG)
|
224 |
+
h.setFormatter(formatter)
|
225 |
+
logger.addHandler(h)
|
226 |
+
return logger
|
227 |
+
|
228 |
+
|
229 |
+
class HParams():
|
230 |
+
def __init__(self, **kwargs):
|
231 |
+
for k, v in kwargs.items():
|
232 |
+
if type(v) == dict:
|
233 |
+
v = HParams(**v)
|
234 |
+
self[k] = v
|
235 |
+
|
236 |
+
def keys(self):
|
237 |
+
return self.__dict__.keys()
|
238 |
+
|
239 |
+
def items(self):
|
240 |
+
return self.__dict__.items()
|
241 |
+
|
242 |
+
def values(self):
|
243 |
+
return self.__dict__.values()
|
244 |
+
|
245 |
+
def __len__(self):
|
246 |
+
return len(self.__dict__)
|
247 |
+
|
248 |
+
def __getitem__(self, key):
|
249 |
+
return getattr(self, key)
|
250 |
+
|
251 |
+
def __setitem__(self, key, value):
|
252 |
+
return setattr(self, key, value)
|
253 |
+
|
254 |
+
def __contains__(self, key):
|
255 |
+
return key in self.__dict__
|
256 |
+
|
257 |
+
def __repr__(self):
|
258 |
+
return self.__dict__.__repr__()
|
Utils/Utils2/ASR/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Utils/Utils2/ASR/config.yml
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
log_dir: "logs/20201006"
|
2 |
-
save_freq: 5
|
3 |
-
device: "cuda"
|
4 |
-
epochs: 180
|
5 |
-
batch_size: 64
|
6 |
-
pretrained_model: ""
|
7 |
-
train_data: "ASRDataset/train_list.txt"
|
8 |
-
val_data: "ASRDataset/val_list.txt"
|
9 |
-
|
10 |
-
dataset_params:
|
11 |
-
data_augmentation: false
|
12 |
-
|
13 |
-
preprocess_parasm:
|
14 |
-
sr: 24000
|
15 |
-
spect_params:
|
16 |
-
n_fft: 2048
|
17 |
-
win_length: 1200
|
18 |
-
hop_length: 300
|
19 |
-
mel_params:
|
20 |
-
n_mels: 80
|
21 |
-
|
22 |
-
model_params:
|
23 |
-
input_dim: 80
|
24 |
-
hidden_dim: 256
|
25 |
-
n_token: 178
|
26 |
-
token_embedding_dim: 512
|
27 |
-
|
28 |
-
optimizer_params:
|
29 |
-
lr: 0.0005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/ASR/epoch_00080.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
3 |
-
size 94552811
|
|
|
|
|
|
|
|
Utils/Utils2/ASR/layers.py
DELETED
@@ -1,354 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from typing import Optional, Any
|
5 |
-
from torch import Tensor
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import torchaudio
|
8 |
-
import torchaudio.functional as audio_F
|
9 |
-
|
10 |
-
import random
|
11 |
-
random.seed(0)
|
12 |
-
|
13 |
-
|
14 |
-
def _get_activation_fn(activ):
|
15 |
-
if activ == 'relu':
|
16 |
-
return nn.ReLU()
|
17 |
-
elif activ == 'lrelu':
|
18 |
-
return nn.LeakyReLU(0.2)
|
19 |
-
elif activ == 'swish':
|
20 |
-
return lambda x: x*torch.sigmoid(x)
|
21 |
-
else:
|
22 |
-
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
23 |
-
|
24 |
-
class LinearNorm(torch.nn.Module):
|
25 |
-
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
26 |
-
super(LinearNorm, self).__init__()
|
27 |
-
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
28 |
-
|
29 |
-
torch.nn.init.xavier_uniform_(
|
30 |
-
self.linear_layer.weight,
|
31 |
-
gain=torch.nn.init.calculate_gain(w_init_gain))
|
32 |
-
|
33 |
-
def forward(self, x):
|
34 |
-
return self.linear_layer(x)
|
35 |
-
|
36 |
-
|
37 |
-
class ConvNorm(torch.nn.Module):
|
38 |
-
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
39 |
-
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
40 |
-
super(ConvNorm, self).__init__()
|
41 |
-
if padding is None:
|
42 |
-
assert(kernel_size % 2 == 1)
|
43 |
-
padding = int(dilation * (kernel_size - 1) / 2)
|
44 |
-
|
45 |
-
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
46 |
-
kernel_size=kernel_size, stride=stride,
|
47 |
-
padding=padding, dilation=dilation,
|
48 |
-
bias=bias)
|
49 |
-
|
50 |
-
torch.nn.init.xavier_uniform_(
|
51 |
-
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
52 |
-
|
53 |
-
def forward(self, signal):
|
54 |
-
conv_signal = self.conv(signal)
|
55 |
-
return conv_signal
|
56 |
-
|
57 |
-
class CausualConv(nn.Module):
|
58 |
-
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
59 |
-
super(CausualConv, self).__init__()
|
60 |
-
if padding is None:
|
61 |
-
assert(kernel_size % 2 == 1)
|
62 |
-
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
63 |
-
else:
|
64 |
-
self.padding = padding * 2
|
65 |
-
self.conv = nn.Conv1d(in_channels, out_channels,
|
66 |
-
kernel_size=kernel_size, stride=stride,
|
67 |
-
padding=self.padding,
|
68 |
-
dilation=dilation,
|
69 |
-
bias=bias)
|
70 |
-
|
71 |
-
torch.nn.init.xavier_uniform_(
|
72 |
-
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
73 |
-
|
74 |
-
def forward(self, x):
|
75 |
-
x = self.conv(x)
|
76 |
-
x = x[:, :, :-self.padding]
|
77 |
-
return x
|
78 |
-
|
79 |
-
class CausualBlock(nn.Module):
|
80 |
-
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
81 |
-
super(CausualBlock, self).__init__()
|
82 |
-
self.blocks = nn.ModuleList([
|
83 |
-
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
84 |
-
for i in range(n_conv)])
|
85 |
-
|
86 |
-
def forward(self, x):
|
87 |
-
for block in self.blocks:
|
88 |
-
res = x
|
89 |
-
x = block(x)
|
90 |
-
x += res
|
91 |
-
return x
|
92 |
-
|
93 |
-
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
94 |
-
layers = [
|
95 |
-
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
96 |
-
_get_activation_fn(activ),
|
97 |
-
nn.BatchNorm1d(hidden_dim),
|
98 |
-
nn.Dropout(p=dropout_p),
|
99 |
-
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
100 |
-
_get_activation_fn(activ),
|
101 |
-
nn.Dropout(p=dropout_p)
|
102 |
-
]
|
103 |
-
return nn.Sequential(*layers)
|
104 |
-
|
105 |
-
class ConvBlock(nn.Module):
|
106 |
-
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
107 |
-
super().__init__()
|
108 |
-
self._n_groups = 8
|
109 |
-
self.blocks = nn.ModuleList([
|
110 |
-
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
111 |
-
for i in range(n_conv)])
|
112 |
-
|
113 |
-
|
114 |
-
def forward(self, x):
|
115 |
-
for block in self.blocks:
|
116 |
-
res = x
|
117 |
-
x = block(x)
|
118 |
-
x += res
|
119 |
-
return x
|
120 |
-
|
121 |
-
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
122 |
-
layers = [
|
123 |
-
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
124 |
-
_get_activation_fn(activ),
|
125 |
-
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
126 |
-
nn.Dropout(p=dropout_p),
|
127 |
-
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
128 |
-
_get_activation_fn(activ),
|
129 |
-
nn.Dropout(p=dropout_p)
|
130 |
-
]
|
131 |
-
return nn.Sequential(*layers)
|
132 |
-
|
133 |
-
class LocationLayer(nn.Module):
|
134 |
-
def __init__(self, attention_n_filters, attention_kernel_size,
|
135 |
-
attention_dim):
|
136 |
-
super(LocationLayer, self).__init__()
|
137 |
-
padding = int((attention_kernel_size - 1) / 2)
|
138 |
-
self.location_conv = ConvNorm(2, attention_n_filters,
|
139 |
-
kernel_size=attention_kernel_size,
|
140 |
-
padding=padding, bias=False, stride=1,
|
141 |
-
dilation=1)
|
142 |
-
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
143 |
-
bias=False, w_init_gain='tanh')
|
144 |
-
|
145 |
-
def forward(self, attention_weights_cat):
|
146 |
-
processed_attention = self.location_conv(attention_weights_cat)
|
147 |
-
processed_attention = processed_attention.transpose(1, 2)
|
148 |
-
processed_attention = self.location_dense(processed_attention)
|
149 |
-
return processed_attention
|
150 |
-
|
151 |
-
|
152 |
-
class Attention(nn.Module):
|
153 |
-
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
154 |
-
attention_location_n_filters, attention_location_kernel_size):
|
155 |
-
super(Attention, self).__init__()
|
156 |
-
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
157 |
-
bias=False, w_init_gain='tanh')
|
158 |
-
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
159 |
-
w_init_gain='tanh')
|
160 |
-
self.v = LinearNorm(attention_dim, 1, bias=False)
|
161 |
-
self.location_layer = LocationLayer(attention_location_n_filters,
|
162 |
-
attention_location_kernel_size,
|
163 |
-
attention_dim)
|
164 |
-
self.score_mask_value = -float("inf")
|
165 |
-
|
166 |
-
def get_alignment_energies(self, query, processed_memory,
|
167 |
-
attention_weights_cat):
|
168 |
-
"""
|
169 |
-
PARAMS
|
170 |
-
------
|
171 |
-
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
172 |
-
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
173 |
-
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
174 |
-
RETURNS
|
175 |
-
-------
|
176 |
-
alignment (batch, max_time)
|
177 |
-
"""
|
178 |
-
|
179 |
-
processed_query = self.query_layer(query.unsqueeze(1))
|
180 |
-
processed_attention_weights = self.location_layer(attention_weights_cat)
|
181 |
-
energies = self.v(torch.tanh(
|
182 |
-
processed_query + processed_attention_weights + processed_memory))
|
183 |
-
|
184 |
-
energies = energies.squeeze(-1)
|
185 |
-
return energies
|
186 |
-
|
187 |
-
def forward(self, attention_hidden_state, memory, processed_memory,
|
188 |
-
attention_weights_cat, mask):
|
189 |
-
"""
|
190 |
-
PARAMS
|
191 |
-
------
|
192 |
-
attention_hidden_state: attention rnn last output
|
193 |
-
memory: encoder outputs
|
194 |
-
processed_memory: processed encoder outputs
|
195 |
-
attention_weights_cat: previous and cummulative attention weights
|
196 |
-
mask: binary mask for padded data
|
197 |
-
"""
|
198 |
-
alignment = self.get_alignment_energies(
|
199 |
-
attention_hidden_state, processed_memory, attention_weights_cat)
|
200 |
-
|
201 |
-
if mask is not None:
|
202 |
-
alignment.data.masked_fill_(mask, self.score_mask_value)
|
203 |
-
|
204 |
-
attention_weights = F.softmax(alignment, dim=1)
|
205 |
-
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
206 |
-
attention_context = attention_context.squeeze(1)
|
207 |
-
|
208 |
-
return attention_context, attention_weights
|
209 |
-
|
210 |
-
|
211 |
-
class ForwardAttentionV2(nn.Module):
|
212 |
-
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
213 |
-
attention_location_n_filters, attention_location_kernel_size):
|
214 |
-
super(ForwardAttentionV2, self).__init__()
|
215 |
-
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
216 |
-
bias=False, w_init_gain='tanh')
|
217 |
-
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
218 |
-
w_init_gain='tanh')
|
219 |
-
self.v = LinearNorm(attention_dim, 1, bias=False)
|
220 |
-
self.location_layer = LocationLayer(attention_location_n_filters,
|
221 |
-
attention_location_kernel_size,
|
222 |
-
attention_dim)
|
223 |
-
self.score_mask_value = -float(1e20)
|
224 |
-
|
225 |
-
def get_alignment_energies(self, query, processed_memory,
|
226 |
-
attention_weights_cat):
|
227 |
-
"""
|
228 |
-
PARAMS
|
229 |
-
------
|
230 |
-
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
231 |
-
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
232 |
-
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
233 |
-
RETURNS
|
234 |
-
-------
|
235 |
-
alignment (batch, max_time)
|
236 |
-
"""
|
237 |
-
|
238 |
-
processed_query = self.query_layer(query.unsqueeze(1))
|
239 |
-
processed_attention_weights = self.location_layer(attention_weights_cat)
|
240 |
-
energies = self.v(torch.tanh(
|
241 |
-
processed_query + processed_attention_weights + processed_memory))
|
242 |
-
|
243 |
-
energies = energies.squeeze(-1)
|
244 |
-
return energies
|
245 |
-
|
246 |
-
def forward(self, attention_hidden_state, memory, processed_memory,
|
247 |
-
attention_weights_cat, mask, log_alpha):
|
248 |
-
"""
|
249 |
-
PARAMS
|
250 |
-
------
|
251 |
-
attention_hidden_state: attention rnn last output
|
252 |
-
memory: encoder outputs
|
253 |
-
processed_memory: processed encoder outputs
|
254 |
-
attention_weights_cat: previous and cummulative attention weights
|
255 |
-
mask: binary mask for padded data
|
256 |
-
"""
|
257 |
-
log_energy = self.get_alignment_energies(
|
258 |
-
attention_hidden_state, processed_memory, attention_weights_cat)
|
259 |
-
|
260 |
-
#log_energy =
|
261 |
-
|
262 |
-
if mask is not None:
|
263 |
-
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
264 |
-
|
265 |
-
#attention_weights = F.softmax(alignment, dim=1)
|
266 |
-
|
267 |
-
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
268 |
-
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
269 |
-
|
270 |
-
#log_total_score = log_alpha + content_score
|
271 |
-
|
272 |
-
#previous_attention_weights = attention_weights_cat[:,0,:]
|
273 |
-
|
274 |
-
log_alpha_shift_padded = []
|
275 |
-
max_time = log_energy.size(1)
|
276 |
-
for sft in range(2):
|
277 |
-
shifted = log_alpha[:,:max_time-sft]
|
278 |
-
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
279 |
-
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
280 |
-
|
281 |
-
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
282 |
-
|
283 |
-
log_alpha_new = biased + log_energy
|
284 |
-
|
285 |
-
attention_weights = F.softmax(log_alpha_new, dim=1)
|
286 |
-
|
287 |
-
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
288 |
-
attention_context = attention_context.squeeze(1)
|
289 |
-
|
290 |
-
return attention_context, attention_weights, log_alpha_new
|
291 |
-
|
292 |
-
|
293 |
-
class PhaseShuffle2d(nn.Module):
|
294 |
-
def __init__(self, n=2):
|
295 |
-
super(PhaseShuffle2d, self).__init__()
|
296 |
-
self.n = n
|
297 |
-
self.random = random.Random(1)
|
298 |
-
|
299 |
-
def forward(self, x, move=None):
|
300 |
-
# x.size = (B, C, M, L)
|
301 |
-
if move is None:
|
302 |
-
move = self.random.randint(-self.n, self.n)
|
303 |
-
|
304 |
-
if move == 0:
|
305 |
-
return x
|
306 |
-
else:
|
307 |
-
left = x[:, :, :, :move]
|
308 |
-
right = x[:, :, :, move:]
|
309 |
-
shuffled = torch.cat([right, left], dim=3)
|
310 |
-
return shuffled
|
311 |
-
|
312 |
-
class PhaseShuffle1d(nn.Module):
|
313 |
-
def __init__(self, n=2):
|
314 |
-
super(PhaseShuffle1d, self).__init__()
|
315 |
-
self.n = n
|
316 |
-
self.random = random.Random(1)
|
317 |
-
|
318 |
-
def forward(self, x, move=None):
|
319 |
-
# x.size = (B, C, M, L)
|
320 |
-
if move is None:
|
321 |
-
move = self.random.randint(-self.n, self.n)
|
322 |
-
|
323 |
-
if move == 0:
|
324 |
-
return x
|
325 |
-
else:
|
326 |
-
left = x[:, :, :move]
|
327 |
-
right = x[:, :, move:]
|
328 |
-
shuffled = torch.cat([right, left], dim=2)
|
329 |
-
|
330 |
-
return shuffled
|
331 |
-
|
332 |
-
class MFCC(nn.Module):
|
333 |
-
def __init__(self, n_mfcc=40, n_mels=80):
|
334 |
-
super(MFCC, self).__init__()
|
335 |
-
self.n_mfcc = n_mfcc
|
336 |
-
self.n_mels = n_mels
|
337 |
-
self.norm = 'ortho'
|
338 |
-
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
339 |
-
self.register_buffer('dct_mat', dct_mat)
|
340 |
-
|
341 |
-
def forward(self, mel_specgram):
|
342 |
-
if len(mel_specgram.shape) == 2:
|
343 |
-
mel_specgram = mel_specgram.unsqueeze(0)
|
344 |
-
unsqueezed = True
|
345 |
-
else:
|
346 |
-
unsqueezed = False
|
347 |
-
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
348 |
-
# -> (channel, time, n_mfcc).tranpose(...)
|
349 |
-
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
350 |
-
|
351 |
-
# unpack batch
|
352 |
-
if unsqueezed:
|
353 |
-
mfcc = mfcc.squeeze(0)
|
354 |
-
return mfcc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/ASR/models.py
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import TransformerEncoder
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
7 |
-
|
8 |
-
class ASRCNN(nn.Module):
|
9 |
-
def __init__(self,
|
10 |
-
input_dim=80,
|
11 |
-
hidden_dim=256,
|
12 |
-
n_token=35,
|
13 |
-
n_layers=6,
|
14 |
-
token_embedding_dim=256,
|
15 |
-
|
16 |
-
):
|
17 |
-
super().__init__()
|
18 |
-
self.n_token = n_token
|
19 |
-
self.n_down = 1
|
20 |
-
self.to_mfcc = MFCC()
|
21 |
-
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
22 |
-
self.cnns = nn.Sequential(
|
23 |
-
*[nn.Sequential(
|
24 |
-
ConvBlock(hidden_dim),
|
25 |
-
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
26 |
-
) for n in range(n_layers)])
|
27 |
-
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
28 |
-
self.ctc_linear = nn.Sequential(
|
29 |
-
LinearNorm(hidden_dim//2, hidden_dim),
|
30 |
-
nn.ReLU(),
|
31 |
-
LinearNorm(hidden_dim, n_token))
|
32 |
-
self.asr_s2s = ASRS2S(
|
33 |
-
embedding_dim=token_embedding_dim,
|
34 |
-
hidden_dim=hidden_dim//2,
|
35 |
-
n_token=n_token)
|
36 |
-
|
37 |
-
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
38 |
-
x = self.to_mfcc(x)
|
39 |
-
x = self.init_cnn(x)
|
40 |
-
x = self.cnns(x)
|
41 |
-
x = self.projection(x)
|
42 |
-
x = x.transpose(1, 2)
|
43 |
-
ctc_logit = self.ctc_linear(x)
|
44 |
-
if text_input is not None:
|
45 |
-
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
46 |
-
return ctc_logit, s2s_logit, s2s_attn
|
47 |
-
else:
|
48 |
-
return ctc_logit
|
49 |
-
|
50 |
-
def get_feature(self, x):
|
51 |
-
x = self.to_mfcc(x.squeeze(1))
|
52 |
-
x = self.init_cnn(x)
|
53 |
-
x = self.cnns(x)
|
54 |
-
x = self.projection(x)
|
55 |
-
return x
|
56 |
-
|
57 |
-
def length_to_mask(self, lengths):
|
58 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
59 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
60 |
-
return mask
|
61 |
-
|
62 |
-
def get_future_mask(self, out_length, unmask_future_steps=0):
|
63 |
-
"""
|
64 |
-
Args:
|
65 |
-
out_length (int): returned mask shape is (out_length, out_length).
|
66 |
-
unmask_futre_steps (int): unmasking future step size.
|
67 |
-
Return:
|
68 |
-
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
69 |
-
"""
|
70 |
-
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
71 |
-
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
72 |
-
return mask
|
73 |
-
|
74 |
-
class ASRS2S(nn.Module):
|
75 |
-
def __init__(self,
|
76 |
-
embedding_dim=256,
|
77 |
-
hidden_dim=512,
|
78 |
-
n_location_filters=32,
|
79 |
-
location_kernel_size=63,
|
80 |
-
n_token=40):
|
81 |
-
super(ASRS2S, self).__init__()
|
82 |
-
self.embedding = nn.Embedding(n_token, embedding_dim)
|
83 |
-
val_range = math.sqrt(6 / hidden_dim)
|
84 |
-
self.embedding.weight.data.uniform_(-val_range, val_range)
|
85 |
-
|
86 |
-
self.decoder_rnn_dim = hidden_dim
|
87 |
-
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
88 |
-
self.attention_layer = Attention(
|
89 |
-
self.decoder_rnn_dim,
|
90 |
-
hidden_dim,
|
91 |
-
hidden_dim,
|
92 |
-
n_location_filters,
|
93 |
-
location_kernel_size
|
94 |
-
)
|
95 |
-
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
96 |
-
self.project_to_hidden = nn.Sequential(
|
97 |
-
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
98 |
-
nn.Tanh())
|
99 |
-
self.sos = 1
|
100 |
-
self.eos = 2
|
101 |
-
|
102 |
-
def initialize_decoder_states(self, memory, mask):
|
103 |
-
"""
|
104 |
-
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
105 |
-
"""
|
106 |
-
B, L, H = memory.shape
|
107 |
-
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
108 |
-
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
109 |
-
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
110 |
-
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
111 |
-
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
112 |
-
self.memory = memory
|
113 |
-
self.processed_memory = self.attention_layer.memory_layer(memory)
|
114 |
-
self.mask = mask
|
115 |
-
self.unk_index = 3
|
116 |
-
self.random_mask = 0.1
|
117 |
-
|
118 |
-
def forward(self, memory, memory_mask, text_input):
|
119 |
-
"""
|
120 |
-
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
121 |
-
moemory_mask.shape = (B, L, )
|
122 |
-
texts_input.shape = (B, T)
|
123 |
-
"""
|
124 |
-
self.initialize_decoder_states(memory, memory_mask)
|
125 |
-
# text random mask
|
126 |
-
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
127 |
-
_text_input = text_input.clone()
|
128 |
-
_text_input.masked_fill_(random_mask, self.unk_index)
|
129 |
-
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
130 |
-
start_embedding = self.embedding(
|
131 |
-
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
132 |
-
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
133 |
-
|
134 |
-
hidden_outputs, logit_outputs, alignments = [], [], []
|
135 |
-
while len(hidden_outputs) < decoder_inputs.size(0):
|
136 |
-
|
137 |
-
decoder_input = decoder_inputs[len(hidden_outputs)]
|
138 |
-
hidden, logit, attention_weights = self.decode(decoder_input)
|
139 |
-
hidden_outputs += [hidden]
|
140 |
-
logit_outputs += [logit]
|
141 |
-
alignments += [attention_weights]
|
142 |
-
|
143 |
-
hidden_outputs, logit_outputs, alignments = \
|
144 |
-
self.parse_decoder_outputs(
|
145 |
-
hidden_outputs, logit_outputs, alignments)
|
146 |
-
|
147 |
-
return hidden_outputs, logit_outputs, alignments
|
148 |
-
|
149 |
-
|
150 |
-
def decode(self, decoder_input):
|
151 |
-
|
152 |
-
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
153 |
-
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
154 |
-
cell_input,
|
155 |
-
(self.decoder_hidden, self.decoder_cell))
|
156 |
-
|
157 |
-
attention_weights_cat = torch.cat(
|
158 |
-
(self.attention_weights.unsqueeze(1),
|
159 |
-
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
160 |
-
|
161 |
-
self.attention_context, self.attention_weights = self.attention_layer(
|
162 |
-
self.decoder_hidden,
|
163 |
-
self.memory,
|
164 |
-
self.processed_memory,
|
165 |
-
attention_weights_cat,
|
166 |
-
self.mask)
|
167 |
-
|
168 |
-
self.attention_weights_cum += self.attention_weights
|
169 |
-
|
170 |
-
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
171 |
-
hidden = self.project_to_hidden(hidden_and_context)
|
172 |
-
|
173 |
-
# dropout to increasing g
|
174 |
-
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
175 |
-
|
176 |
-
return hidden, logit, self.attention_weights
|
177 |
-
|
178 |
-
def parse_decoder_outputs(self, hidden, logit, alignments):
|
179 |
-
|
180 |
-
# -> [B, T_out + 1, max_time]
|
181 |
-
alignments = torch.stack(alignments).transpose(0,1)
|
182 |
-
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
183 |
-
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
184 |
-
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
185 |
-
|
186 |
-
return hidden, logit, alignments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/JDC/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Utils/Utils2/JDC/bst.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
3 |
-
size 21029926
|
|
|
|
|
|
|
|
Utils/Utils2/JDC/model.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Implementation of model from:
|
3 |
-
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
4 |
-
Convolutional Recurrent Neural Networks" (2019)
|
5 |
-
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
6 |
-
"""
|
7 |
-
import torch
|
8 |
-
from torch import nn
|
9 |
-
|
10 |
-
class JDCNet(nn.Module):
|
11 |
-
"""
|
12 |
-
Joint Detection and Classification Network model for singing voice melody.
|
13 |
-
"""
|
14 |
-
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
15 |
-
super().__init__()
|
16 |
-
self.num_class = num_class
|
17 |
-
|
18 |
-
# input = (b, 1, 31, 513), b = batch size
|
19 |
-
self.conv_block = nn.Sequential(
|
20 |
-
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
21 |
-
nn.BatchNorm2d(num_features=64),
|
22 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
23 |
-
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
24 |
-
)
|
25 |
-
|
26 |
-
# res blocks
|
27 |
-
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
28 |
-
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
29 |
-
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
30 |
-
|
31 |
-
# pool block
|
32 |
-
self.pool_block = nn.Sequential(
|
33 |
-
nn.BatchNorm2d(num_features=256),
|
34 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
35 |
-
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
36 |
-
nn.Dropout(p=0.2),
|
37 |
-
)
|
38 |
-
|
39 |
-
# maxpool layers (for auxiliary network inputs)
|
40 |
-
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
41 |
-
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
42 |
-
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
43 |
-
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
44 |
-
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
45 |
-
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
46 |
-
|
47 |
-
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
48 |
-
self.detector_conv = nn.Sequential(
|
49 |
-
nn.Conv2d(640, 256, 1, bias=False),
|
50 |
-
nn.BatchNorm2d(256),
|
51 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
52 |
-
nn.Dropout(p=0.2),
|
53 |
-
)
|
54 |
-
|
55 |
-
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
56 |
-
self.bilstm_classifier = nn.LSTM(
|
57 |
-
input_size=512, hidden_size=256,
|
58 |
-
batch_first=True, bidirectional=True) # (b, 31, 512)
|
59 |
-
|
60 |
-
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
61 |
-
self.bilstm_detector = nn.LSTM(
|
62 |
-
input_size=512, hidden_size=256,
|
63 |
-
batch_first=True, bidirectional=True) # (b, 31, 512)
|
64 |
-
|
65 |
-
# input: (b * 31, 512)
|
66 |
-
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
67 |
-
|
68 |
-
# input: (b * 31, 512)
|
69 |
-
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
70 |
-
|
71 |
-
# initialize weights
|
72 |
-
self.apply(self.init_weights)
|
73 |
-
|
74 |
-
def get_feature_GAN(self, x):
|
75 |
-
seq_len = x.shape[-2]
|
76 |
-
x = x.float().transpose(-1, -2)
|
77 |
-
|
78 |
-
convblock_out = self.conv_block(x)
|
79 |
-
|
80 |
-
resblock1_out = self.res_block1(convblock_out)
|
81 |
-
resblock2_out = self.res_block2(resblock1_out)
|
82 |
-
resblock3_out = self.res_block3(resblock2_out)
|
83 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
84 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
85 |
-
|
86 |
-
return poolblock_out.transpose(-1, -2)
|
87 |
-
|
88 |
-
def get_feature(self, x):
|
89 |
-
seq_len = x.shape[-2]
|
90 |
-
x = x.float().transpose(-1, -2)
|
91 |
-
|
92 |
-
convblock_out = self.conv_block(x)
|
93 |
-
|
94 |
-
resblock1_out = self.res_block1(convblock_out)
|
95 |
-
resblock2_out = self.res_block2(resblock1_out)
|
96 |
-
resblock3_out = self.res_block3(resblock2_out)
|
97 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
98 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
99 |
-
|
100 |
-
return self.pool_block[2](poolblock_out)
|
101 |
-
|
102 |
-
def forward(self, x):
|
103 |
-
"""
|
104 |
-
Returns:
|
105 |
-
classification_prediction, detection_prediction
|
106 |
-
sizes: (b, 31, 722), (b, 31, 2)
|
107 |
-
"""
|
108 |
-
###############################
|
109 |
-
# forward pass for classifier #
|
110 |
-
###############################
|
111 |
-
seq_len = x.shape[-1]
|
112 |
-
x = x.float().transpose(-1, -2)
|
113 |
-
|
114 |
-
convblock_out = self.conv_block(x)
|
115 |
-
|
116 |
-
resblock1_out = self.res_block1(convblock_out)
|
117 |
-
resblock2_out = self.res_block2(resblock1_out)
|
118 |
-
resblock3_out = self.res_block3(resblock2_out)
|
119 |
-
|
120 |
-
|
121 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
122 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
123 |
-
GAN_feature = poolblock_out.transpose(-1, -2)
|
124 |
-
poolblock_out = self.pool_block[2](poolblock_out)
|
125 |
-
|
126 |
-
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
127 |
-
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
128 |
-
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
129 |
-
|
130 |
-
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
131 |
-
classifier_out = self.classifier(classifier_out)
|
132 |
-
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
133 |
-
|
134 |
-
# sizes: (b, 31, 722), (b, 31, 2)
|
135 |
-
# classifier output consists of predicted pitch classes per frame
|
136 |
-
# detector output consists of: (isvoice, notvoice) estimates per frame
|
137 |
-
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
138 |
-
|
139 |
-
@staticmethod
|
140 |
-
def init_weights(m):
|
141 |
-
if isinstance(m, nn.Linear):
|
142 |
-
nn.init.kaiming_uniform_(m.weight)
|
143 |
-
if m.bias is not None:
|
144 |
-
nn.init.constant_(m.bias, 0)
|
145 |
-
elif isinstance(m, nn.Conv2d):
|
146 |
-
nn.init.xavier_normal_(m.weight)
|
147 |
-
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
148 |
-
for p in m.parameters():
|
149 |
-
if p.data is None:
|
150 |
-
continue
|
151 |
-
|
152 |
-
if len(p.shape) >= 2:
|
153 |
-
nn.init.orthogonal_(p.data)
|
154 |
-
else:
|
155 |
-
nn.init.normal_(p.data)
|
156 |
-
|
157 |
-
|
158 |
-
class ResBlock(nn.Module):
|
159 |
-
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
160 |
-
super().__init__()
|
161 |
-
self.downsample = in_channels != out_channels
|
162 |
-
|
163 |
-
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
164 |
-
self.pre_conv = nn.Sequential(
|
165 |
-
nn.BatchNorm2d(num_features=in_channels),
|
166 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
167 |
-
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
168 |
-
)
|
169 |
-
|
170 |
-
# conv layers
|
171 |
-
self.conv = nn.Sequential(
|
172 |
-
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
173 |
-
kernel_size=3, padding=1, bias=False),
|
174 |
-
nn.BatchNorm2d(out_channels),
|
175 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
176 |
-
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
177 |
-
)
|
178 |
-
|
179 |
-
# 1 x 1 convolution layer to match the feature dimensions
|
180 |
-
self.conv1by1 = None
|
181 |
-
if self.downsample:
|
182 |
-
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
183 |
-
|
184 |
-
def forward(self, x):
|
185 |
-
x = self.pre_conv(x)
|
186 |
-
if self.downsample:
|
187 |
-
x = self.conv(x) + self.conv1by1(x)
|
188 |
-
else:
|
189 |
-
x = self.conv(x) + x
|
190 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/PLBERT/config.yml
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
log_dir: "Checkpoint"
|
2 |
-
mixed_precision: "fp16"
|
3 |
-
data_folder: "wikipedia_20220301.en.processed"
|
4 |
-
batch_size: 192
|
5 |
-
save_interval: 5000
|
6 |
-
log_interval: 10
|
7 |
-
num_process: 1 # number of GPUs
|
8 |
-
num_steps: 1000000
|
9 |
-
|
10 |
-
dataset_params:
|
11 |
-
tokenizer: "transfo-xl-wt103"
|
12 |
-
token_separator: " " # token used for phoneme separator (space)
|
13 |
-
token_mask: "M" # token used for phoneme mask (M)
|
14 |
-
word_separator: 3039 # token used for word separator (<formula>)
|
15 |
-
token_maps: "token_maps.pkl" # token map path
|
16 |
-
|
17 |
-
max_mel_length: 512 # max phoneme length
|
18 |
-
|
19 |
-
word_mask_prob: 0.15 # probability to mask the entire word
|
20 |
-
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
21 |
-
replace_prob: 0.2 # probablity to replace phonemes
|
22 |
-
|
23 |
-
model_params:
|
24 |
-
vocab_size: 178
|
25 |
-
hidden_size: 768
|
26 |
-
num_attention_heads: 12
|
27 |
-
intermediate_size: 2048
|
28 |
-
max_position_embeddings: 512
|
29 |
-
num_hidden_layers: 12
|
30 |
-
dropout: 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/PLBERT/step_1000000.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
3 |
-
size 25185187
|
|
|
|
|
|
|
|
Utils/Utils2/PLBERT/util.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import yaml
|
3 |
-
import torch
|
4 |
-
from transformers import AlbertConfig, AlbertModel
|
5 |
-
|
6 |
-
class CustomAlbert(AlbertModel):
|
7 |
-
def forward(self, *args, **kwargs):
|
8 |
-
# Call the original forward method
|
9 |
-
outputs = super().forward(*args, **kwargs)
|
10 |
-
|
11 |
-
# Only return the last_hidden_state
|
12 |
-
return outputs.last_hidden_state
|
13 |
-
|
14 |
-
|
15 |
-
def load_plbert(log_dir):
|
16 |
-
config_path = os.path.join(log_dir, "config.yml")
|
17 |
-
plbert_config = yaml.safe_load(open(config_path))
|
18 |
-
|
19 |
-
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
20 |
-
bert = CustomAlbert(albert_base_configuration)
|
21 |
-
|
22 |
-
files = os.listdir(log_dir)
|
23 |
-
ckpts = []
|
24 |
-
for f in os.listdir(log_dir):
|
25 |
-
if f.startswith("step_"): ckpts.append(f)
|
26 |
-
|
27 |
-
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
28 |
-
iters = sorted(iters)[-1]
|
29 |
-
|
30 |
-
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".t7", map_location='cpu')
|
31 |
-
state_dict = checkpoint['net']
|
32 |
-
from collections import OrderedDict
|
33 |
-
new_state_dict = OrderedDict()
|
34 |
-
for k, v in state_dict.items():
|
35 |
-
name = k[7:] # remove `module.`
|
36 |
-
if name.startswith('encoder.'):
|
37 |
-
name = name[8:] # remove `encoder.`
|
38 |
-
new_state_dict[name] = v
|
39 |
-
del new_state_dict["embeddings.position_ids"]
|
40 |
-
bert.load_state_dict(new_state_dict, strict=False)
|
41 |
-
|
42 |
-
return bert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/config.yml
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
{ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
|
2 |
-
PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
|
3 |
-
min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
|
4 |
-
device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
|
5 |
-
load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
|
6 |
-
TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
|
7 |
-
lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
|
8 |
-
lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
|
9 |
-
model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
|
10 |
-
5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
|
11 |
-
upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
|
12 |
-
dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
|
13 |
-
std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
|
14 |
-
num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
|
15 |
-
max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
|
16 |
-
slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
|
17 |
-
sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
|
18 |
-
lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
|
19 |
-
win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
|
20 |
-
save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
|
21 |
-
iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/Utils2/engineer_style_vectors_v2.py
DELETED
@@ -1,331 +0,0 @@
|
|
1 |
-
|
2 |
-
from pathlib import Path
|
3 |
-
import shutil
|
4 |
-
import csv
|
5 |
-
import io
|
6 |
-
import os
|
7 |
-
import typing
|
8 |
-
import wave
|
9 |
-
import sys
|
10 |
-
from mimic3_tts.__main__ import (CommandLineInterfaceState,
|
11 |
-
get_args,
|
12 |
-
initialize_args,
|
13 |
-
initialize_tts,
|
14 |
-
# print_voices,
|
15 |
-
# process_lines,
|
16 |
-
shutdown_tts,
|
17 |
-
OutputNaming,
|
18 |
-
process_line)
|
19 |
-
|
20 |
-
|
21 |
-
def process_lines(state: CommandLineInterfaceState, wav_path=None):
|
22 |
-
'''MIMIC3 INTERNAL CALL that yields the sigh sound'''
|
23 |
-
|
24 |
-
args = state.args
|
25 |
-
|
26 |
-
result_idx = 0
|
27 |
-
print(f'why waitings in the for loop LIN {state.texts=}\n')
|
28 |
-
for line in state.texts:
|
29 |
-
print(f'LIN {line=}\n') # prints \n so is empty not getting the predifne text of state.texts
|
30 |
-
line_voice: typing.Optional[str] = None
|
31 |
-
line_id = ""
|
32 |
-
line = line.strip()
|
33 |
-
# if not line:
|
34 |
-
# continue
|
35 |
-
|
36 |
-
if args.output_naming == OutputNaming.ID:
|
37 |
-
# Line has the format id|text instead of just text
|
38 |
-
with io.StringIO(line) as line_io:
|
39 |
-
reader = csv.reader(line_io, delimiter=args.csv_delimiter)
|
40 |
-
row = next(reader)
|
41 |
-
line_id, line = row[0], row[-1]
|
42 |
-
if args.csv_voice:
|
43 |
-
line_voice = row[1]
|
44 |
-
|
45 |
-
process_line(line, state, line_id=line_id, line_voice=line_voice)
|
46 |
-
result_idx += 1
|
47 |
-
|
48 |
-
print('\nARRive at All Audio writing\n\n\n\n')
|
49 |
-
# -------------------------------------------------------------------------
|
50 |
-
|
51 |
-
# Write combined audio to stdout
|
52 |
-
if state.all_audio:
|
53 |
-
# _LOGGER.debug("Writing WAV audio to stdout")
|
54 |
-
|
55 |
-
if sys.stdout.isatty() and (not state.args.stdout):
|
56 |
-
with io.BytesIO() as wav_io:
|
57 |
-
wav_file_play: wave.Wave_write = wave.open(wav_io, "wb")
|
58 |
-
with wav_file_play:
|
59 |
-
wav_file_play.setframerate(state.sample_rate_hz)
|
60 |
-
wav_file_play.setsampwidth(state.sample_width_bytes)
|
61 |
-
wav_file_play.setnchannels(state.num_channels)
|
62 |
-
wav_file_play.writeframes(state.all_audio)
|
63 |
-
|
64 |
-
# play_wav_bytes(state.args, wav_io.getvalue())
|
65 |
-
# wav_path = '_direct_call_2.wav'
|
66 |
-
with open(wav_path, 'wb') as wav_file:
|
67 |
-
wav_file.write(wav_io.getvalue())
|
68 |
-
wav_file.seek(0)
|
69 |
-
|
70 |
-
# -----------------------------------------------------------------------------
|
71 |
-
# cat _tmp_ssml.txt | mimic3 --cuda --ssml --noise-w 0.90001 --length-scale 0.91 --noise-scale 0.04 > noise_w=0.90_en_happy_2.wav
|
72 |
-
# ======================================================================
|
73 |
-
out_dir = 'assets/'
|
74 |
-
reference_wav_directory = 'assets/wavs/style_vector_v2/'
|
75 |
-
Path(reference_wav_directory).mkdir(parents=True, exist_ok=True)
|
76 |
-
Path(out_dir).mkdir(parents=True, exist_ok=True)
|
77 |
-
|
78 |
-
wav_dir = 'assets/wavs/'
|
79 |
-
Path(wav_dir).mkdir(parents=True, exist_ok=True)
|
80 |
-
N_PIX = 11
|
81 |
-
|
82 |
-
|
83 |
-
# =======================================================================
|
84 |
-
# S T A R T G E N E R A T E png/wav
|
85 |
-
# =======================================================================
|
86 |
-
|
87 |
-
NOISE_SCALE = .667
|
88 |
-
NOISE_W = .9001 #.8 #.90001 # default .8 in __main__.py @ L697 IGNORED DUE TO ARTEfACTS - FOR NOW USE default
|
89 |
-
|
90 |
-
a = [
|
91 |
-
'p239',
|
92 |
-
'p236',
|
93 |
-
'p264',
|
94 |
-
'p250',
|
95 |
-
'p259',
|
96 |
-
'p247',
|
97 |
-
'p261',
|
98 |
-
'p263',
|
99 |
-
'p283',
|
100 |
-
'p274',
|
101 |
-
'p286',
|
102 |
-
'p276',
|
103 |
-
'p270',
|
104 |
-
'p281',
|
105 |
-
'p277',
|
106 |
-
'p231',
|
107 |
-
'p238',
|
108 |
-
'p271',
|
109 |
-
'p257',
|
110 |
-
'p273',
|
111 |
-
'p284',
|
112 |
-
'p329',
|
113 |
-
'p361',
|
114 |
-
'p287',
|
115 |
-
'p360',
|
116 |
-
'p374',
|
117 |
-
'p376',
|
118 |
-
'p310',
|
119 |
-
'p304',
|
120 |
-
'p340',
|
121 |
-
'p347',
|
122 |
-
'p330',
|
123 |
-
'p308',
|
124 |
-
'p314',
|
125 |
-
'p317',
|
126 |
-
'p339',
|
127 |
-
'p311',
|
128 |
-
'p294',
|
129 |
-
'p305',
|
130 |
-
'p266',
|
131 |
-
'p335',
|
132 |
-
'p334',
|
133 |
-
'p318',
|
134 |
-
'p323',
|
135 |
-
'p351',
|
136 |
-
'p333',
|
137 |
-
'p313',
|
138 |
-
'p316',
|
139 |
-
'p244',
|
140 |
-
'p307',
|
141 |
-
'p363',
|
142 |
-
'p336',
|
143 |
-
'p312',
|
144 |
-
'p267',
|
145 |
-
'p297',
|
146 |
-
'p275',
|
147 |
-
'p295',
|
148 |
-
'p288',
|
149 |
-
'p258',
|
150 |
-
'p301',
|
151 |
-
'p232',
|
152 |
-
'p292',
|
153 |
-
'p272',
|
154 |
-
'p278',
|
155 |
-
'p280',
|
156 |
-
'p341',
|
157 |
-
'p268',
|
158 |
-
'p298',
|
159 |
-
'p299',
|
160 |
-
'p279',
|
161 |
-
'p285',
|
162 |
-
'p326',
|
163 |
-
'p300',
|
164 |
-
's5',
|
165 |
-
'p230',
|
166 |
-
'p254',
|
167 |
-
'p269',
|
168 |
-
'p293',
|
169 |
-
'p252',
|
170 |
-
'p345',
|
171 |
-
'p262',
|
172 |
-
'p243',
|
173 |
-
'p227',
|
174 |
-
'p343',
|
175 |
-
'p255',
|
176 |
-
'p229',
|
177 |
-
'p240',
|
178 |
-
'p248',
|
179 |
-
'p253',
|
180 |
-
'p233',
|
181 |
-
'p228',
|
182 |
-
'p251',
|
183 |
-
'p282',
|
184 |
-
'p246',
|
185 |
-
'p234',
|
186 |
-
'p226',
|
187 |
-
'p260',
|
188 |
-
'p245',
|
189 |
-
'p241',
|
190 |
-
'p303',
|
191 |
-
'p265',
|
192 |
-
'p306',
|
193 |
-
'p237',
|
194 |
-
'p249',
|
195 |
-
'p256',
|
196 |
-
'p302',
|
197 |
-
'p364',
|
198 |
-
'p225',
|
199 |
-
'p362']
|
200 |
-
|
201 |
-
print(len(a))
|
202 |
-
|
203 |
-
b = []
|
204 |
-
|
205 |
-
for row in a:
|
206 |
-
b.append(f'en_US/vctk_low#{row}')
|
207 |
-
|
208 |
-
# print(b)
|
209 |
-
|
210 |
-
# 00000000 arctic
|
211 |
-
|
212 |
-
|
213 |
-
a = [
|
214 |
-
'awb' # comma
|
215 |
-
'rms',
|
216 |
-
'slt',
|
217 |
-
'ksp',
|
218 |
-
'clb',
|
219 |
-
'aew',
|
220 |
-
'bdl',
|
221 |
-
'lnh',
|
222 |
-
'jmk',
|
223 |
-
'rxr',
|
224 |
-
'fem',
|
225 |
-
'ljm',
|
226 |
-
'slp',
|
227 |
-
'ahw',
|
228 |
-
'axb',
|
229 |
-
'aup',
|
230 |
-
'eey',
|
231 |
-
'gka',
|
232 |
-
]
|
233 |
-
|
234 |
-
|
235 |
-
for row in a:
|
236 |
-
b.append(f'en_US/cmu-arctic_low#{row}')
|
237 |
-
|
238 |
-
# HIFItts
|
239 |
-
|
240 |
-
a = ['9017',
|
241 |
-
'6097',
|
242 |
-
'92']
|
243 |
-
|
244 |
-
for row in a:
|
245 |
-
b.append(f'en_US/hifi-tts_low#{row}')
|
246 |
-
|
247 |
-
a = [
|
248 |
-
'elliot_miller',
|
249 |
-
'judy_bieber',
|
250 |
-
'mary_ann']
|
251 |
-
|
252 |
-
for row in a:
|
253 |
-
b.append(f'en_US/m-ailabs_low#{row}')
|
254 |
-
|
255 |
-
# LJspeech - single speaker
|
256 |
-
|
257 |
-
b.append(f'en_US/ljspeech_low')
|
258 |
-
|
259 |
-
# en_UK apope - only speaker
|
260 |
-
|
261 |
-
b.append(f'en_UK/apope_low')
|
262 |
-
|
263 |
-
all_names = b
|
264 |
-
|
265 |
-
|
266 |
-
VOICES = {}
|
267 |
-
for _id, _voice in enumerate(all_names):
|
268 |
-
|
269 |
-
# If GitHub Quota exceded copy mimic-voices from local copies
|
270 |
-
#
|
271 |
-
# https://github.com/MycroftAI/mimic3-voices
|
272 |
-
#
|
273 |
-
home_voice_dir = f'/home/audeering.local/dkounadis/.local/share/mycroft/mimic3/voices/{_voice.split("#")[0]}/'
|
274 |
-
Path(home_voice_dir).mkdir(parents=True, exist_ok=True)
|
275 |
-
speaker_free_voice_name = _voice.split("#")[0] if '#' in _voice else _voice
|
276 |
-
if not os.path.isfile(home_voice_dir + 'generator.onnx'):
|
277 |
-
shutil.copyfile(
|
278 |
-
f'/data/dkounadis/cache/mimic3-voices/voices/{speaker_free_voice_name}/generator.onnx',
|
279 |
-
home_voice_dir + 'generator.onnx') # 'en_US incl. voice
|
280 |
-
|
281 |
-
prepare_file = _voice.replace('/', '_').replace('#', '_').replace('_low', '')
|
282 |
-
if 'cmu-arctic' in prepare_file:
|
283 |
-
prepare_file = prepare_file.replace('cmu-arctic', 'cmu_arctic') + '.wav'
|
284 |
-
else:
|
285 |
-
prepare_file = prepare_file + '.wav' # [...cmu-arctic...](....cmu_arctic....wav)
|
286 |
-
|
287 |
-
file_true = prepare_file.split('.wav')[0] + '_true_.wav'
|
288 |
-
file_false = prepare_file.split('.wav')[0] + '_false_.wav'
|
289 |
-
print(prepare_file, file_false, file_true)
|
290 |
-
|
291 |
-
|
292 |
-
reference_wav = reference_wav_directory + prepare_file
|
293 |
-
rate = 4 # high speed sounds nice if used as speaker-reference audio for StyleTTS2
|
294 |
-
_ssml = (
|
295 |
-
'<speak>'
|
296 |
-
'<prosody volume=\'64\'>'
|
297 |
-
f'<prosody rate=\'{rate}\'>'
|
298 |
-
f'<voice name=\'{_voice}\'>'
|
299 |
-
'<s>'
|
300 |
-
'Sweet dreams are made of this, .. !!! # I travel the world and the seven seas.'
|
301 |
-
'</s>'
|
302 |
-
'</voice>'
|
303 |
-
'</prosody>'
|
304 |
-
'</prosody>'
|
305 |
-
'</speak>'
|
306 |
-
)
|
307 |
-
with open('_tmp_ssml.txt', 'w') as f:
|
308 |
-
f.write(_ssml)
|
309 |
-
|
310 |
-
|
311 |
-
# ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > {reference_wav}', shell=True)
|
312 |
-
# ps.wait() # using ps to call mimic3 because samples dont have time to be written in stdout buffer
|
313 |
-
args = get_args()
|
314 |
-
args.ssml = True
|
315 |
-
args.text = [_ssml] #['aa', 'bb'] #txt
|
316 |
-
args.interactive = False
|
317 |
-
# args.output_naming = OutputNaming.TIME
|
318 |
-
|
319 |
-
state = CommandLineInterfaceState(args=args)
|
320 |
-
initialize_args(state)
|
321 |
-
initialize_tts(state)
|
322 |
-
# args.texts = [txt] #['aa', 'bb'] #txt
|
323 |
-
# state.stdout = '.' #None #'makeme.wav'
|
324 |
-
# state.output_dir = '.noopy'
|
325 |
-
# state.interactive = False
|
326 |
-
# state.output_naming = OutputNaming.TIME
|
327 |
-
# # state.ssml = 1234546575
|
328 |
-
# state.stdout = True
|
329 |
-
# state.tts = True
|
330 |
-
process_lines(state, wav_path=reference_wav)
|
331 |
-
shutdown_tts(state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
api.py
CHANGED
@@ -120,7 +120,8 @@ def overlay(x, scene=None):
|
|
120 |
def tts_multi_sentence(precomputed_style_vector=None,
|
121 |
text=None,
|
122 |
voice=None,
|
123 |
-
scene=None
|
|
|
124 |
'''create 24kHZ np.array with tts
|
125 |
|
126 |
precomputed_style_vector : required if en_US or en_UK in voice, so
|
@@ -131,7 +132,8 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
131 |
'''
|
132 |
|
133 |
|
134 |
-
# StyleTTS2
|
|
|
135 |
if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
|
136 |
assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
|
137 |
x = []
|
@@ -142,18 +144,18 @@ def tts_multi_sentence(precomputed_style_vector=None,
|
|
142 |
beta=0.7,
|
143 |
diffusion_steps=7,
|
144 |
embedding_scale=1))
|
145 |
-
|
146 |
-
|
147 |
-
x
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
text_utils.store_ssml(text=text, voice=voice) # Text has to be list of single sentences
|
153 |
-
ps = subprocess.Popen(f'cat _tmp_ssml.txt | mimic3 --ssml > _tmp.wav', shell=True)
|
154 |
-
ps.wait()
|
155 |
-
x, fs = soundfile.read('_tmp.wav')
|
156 |
-
x = audresample.resample(x.astype(np.float32), 24000, fs)[0, :] # reshapes (64,) -> (1,64)
|
157 |
|
158 |
return overlay(x, scene=scene)
|
159 |
|
@@ -187,13 +189,15 @@ def serve_wav():
|
|
187 |
|
188 |
print('Saved all files on Server Side\n\n')
|
189 |
|
190 |
-
args = SimpleNamespace(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
197 |
)
|
198 |
# print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
|
199 |
|
@@ -258,7 +262,7 @@ def serve_wav():
|
|
258 |
'#', '_').replace(
|
259 |
'cmu-arctic', 'cmu_arctic').replace(
|
260 |
'_low', '') + '.wav')
|
261 |
-
print('\n STYLE VECTOR \n', precomputed_style_vector.shape)
|
262 |
# ====SILENT VIDEO====
|
263 |
|
264 |
if args.video is not None:
|
@@ -391,7 +395,8 @@ def serve_wav():
|
|
391 |
pieces.append(tts_multi_sentence(text=[_text_],
|
392 |
precomputed_style_vector=precomputed_style_vector,
|
393 |
voice=args.voice,
|
394 |
-
scene=args.scene
|
|
|
395 |
)
|
396 |
total = np.concatenate(pieces, 0)
|
397 |
# x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
|
@@ -411,7 +416,8 @@ def serve_wav():
|
|
411 |
x = tts_multi_sentence(text=text,
|
412 |
precomputed_style_vector=precomputed_style_vector,
|
413 |
voice=args.voice,
|
414 |
-
scene=args.scene
|
|
|
415 |
soundfile.write(AUDIO_TRACK, x, 24000)
|
416 |
|
417 |
# IMAGE 2 SPEECH
|
@@ -429,7 +435,8 @@ def serve_wav():
|
|
429 |
x = tts_multi_sentence(text=text,
|
430 |
precomputed_style_vector=precomputed_style_vector,
|
431 |
voice=args.voice,
|
432 |
-
scene=args.scene
|
|
|
433 |
)
|
434 |
soundfile.write(AUDIO_TRACK, x, 24000)
|
435 |
if args.video or args.image:
|
@@ -457,7 +464,8 @@ def serve_wav():
|
|
457 |
x = tts_multi_sentence(text=text,
|
458 |
precomputed_style_vector=precomputed_style_vector,
|
459 |
voice=args.voice,
|
460 |
-
scene=args.scene
|
|
|
461 |
OUT_FILE = 'tmp.wav'
|
462 |
soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
|
463 |
|
|
|
120 |
def tts_multi_sentence(precomputed_style_vector=None,
|
121 |
text=None,
|
122 |
voice=None,
|
123 |
+
scene=None,
|
124 |
+
speed=None):
|
125 |
'''create 24kHZ np.array with tts
|
126 |
|
127 |
precomputed_style_vector : required if en_US or en_UK in voice, so
|
|
|
132 |
'''
|
133 |
|
134 |
|
135 |
+
# StyleTTS2 - English
|
136 |
+
|
137 |
if ('en_US/' in voice) or ('en_UK/' in voice) or (voice is None):
|
138 |
assert precomputed_style_vector is not None, 'For affective TTS, style vector is needed.'
|
139 |
x = []
|
|
|
144 |
beta=0.7,
|
145 |
diffusion_steps=7,
|
146 |
embedding_scale=1))
|
147 |
+
# Fallback - MMS TTS - Non-English Foreign voice=language
|
148 |
+
else:
|
149 |
+
x = []
|
150 |
+
for _sentence in text:
|
151 |
+
x.append(msinference.foreign(text=_sentence,
|
152 |
+
lang=voice, # voice = 'romanian', 'serbian' 'hungarian'
|
153 |
+
speed=speed))
|
154 |
+
|
155 |
+
|
156 |
+
x = np.concatenate(x)
|
157 |
|
158 |
+
x /= np.abs(x).max() + 1e-7 # amplify speech to full [-1,1]
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
return overlay(x, scene=scene)
|
161 |
|
|
|
189 |
|
190 |
print('Saved all files on Server Side\n\n')
|
191 |
|
192 |
+
args = SimpleNamespace(
|
193 |
+
text = None if r.get('text') is None else CACHE_DIR + r.get('text' )[0][-6:],
|
194 |
+
video = None if r.get('video') is None else CACHE_DIR + r.get('video')[0][-6:],
|
195 |
+
image = None if r.get('image') is None else CACHE_DIR + r.get('image')[0][-6:],
|
196 |
+
native = None if r.get('native') is None else CACHE_DIR + r.get('native')[0][-6:],
|
197 |
+
affective = r.get('affective')[0],
|
198 |
+
voice = r.get('voice')[0],
|
199 |
+
speed = float(r.get('speed')[0]), # For Non-English MMS TTS
|
200 |
+
scene=r.get('scene')[0] if r.get('scene') is not None else None,
|
201 |
)
|
202 |
# print('\n==RECOMPOSED as \n',request.data,request.form,'\n==')
|
203 |
|
|
|
262 |
'#', '_').replace(
|
263 |
'cmu-arctic', 'cmu_arctic').replace(
|
264 |
'_low', '') + '.wav')
|
265 |
+
# print('\n STYLE VECTOR \n', precomputed_style_vector.shape) # can be NoNe for foreign lang TTS
|
266 |
# ====SILENT VIDEO====
|
267 |
|
268 |
if args.video is not None:
|
|
|
395 |
pieces.append(tts_multi_sentence(text=[_text_],
|
396 |
precomputed_style_vector=precomputed_style_vector,
|
397 |
voice=args.voice,
|
398 |
+
scene=args.scene,
|
399 |
+
speed=args.speed)
|
400 |
)
|
401 |
total = np.concatenate(pieces, 0)
|
402 |
# x = audresample.resample(x.astype(np.float32), 24000, 22050) # reshapes (64,) -> (1,64)
|
|
|
416 |
x = tts_multi_sentence(text=text,
|
417 |
precomputed_style_vector=precomputed_style_vector,
|
418 |
voice=args.voice,
|
419 |
+
scene=args.scene,
|
420 |
+
speed=args.speed)
|
421 |
soundfile.write(AUDIO_TRACK, x, 24000)
|
422 |
|
423 |
# IMAGE 2 SPEECH
|
|
|
435 |
x = tts_multi_sentence(text=text,
|
436 |
precomputed_style_vector=precomputed_style_vector,
|
437 |
voice=args.voice,
|
438 |
+
scene=args.scene,
|
439 |
+
speed=args.speed
|
440 |
)
|
441 |
soundfile.write(AUDIO_TRACK, x, 24000)
|
442 |
if args.video or args.image:
|
|
|
464 |
x = tts_multi_sentence(text=text,
|
465 |
precomputed_style_vector=precomputed_style_vector,
|
466 |
voice=args.voice,
|
467 |
+
scene=args.scene,
|
468 |
+
speed=args.speed)
|
469 |
OUT_FILE = 'tmp.wav'
|
470 |
soundfile.write(CACHE_DIR + OUT_FILE, x, 24000)
|
471 |
|
msinference.py
CHANGED
@@ -1,26 +1,20 @@
|
|
1 |
import torch
|
2 |
from cached_path import cached_path
|
3 |
import nltk
|
|
|
4 |
# nltk.download('punkt')
|
5 |
-
import random
|
6 |
-
random.seed(0)
|
7 |
import numpy as np
|
8 |
np.random.seed(0)
|
9 |
import time
|
10 |
-
import random
|
11 |
import yaml
|
12 |
import torch.nn.functional as F
|
13 |
import copy
|
14 |
import torchaudio
|
15 |
import librosa
|
16 |
from models import *
|
17 |
-
|
18 |
-
from scipy.io.wavfile import write
|
19 |
from munch import Munch
|
20 |
from torch import nn
|
21 |
from nltk.tokenize import word_tokenize
|
22 |
-
from monotonic_align import mask_from_lens
|
23 |
-
from monotonic_align.core import maximum_path_c
|
24 |
|
25 |
torch.manual_seed(0)
|
26 |
torch.backends.cudnn.benchmark = False
|
@@ -67,7 +61,10 @@ mean, std = -4, 4
|
|
67 |
|
68 |
|
69 |
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
|
@@ -172,7 +169,13 @@ sampler = DiffusionSampler(
|
|
172 |
clamp=False
|
173 |
)
|
174 |
|
175 |
-
def inference(text,
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
text = text.strip()
|
177 |
ps = global_phonemizer.phonemize([text])
|
178 |
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
|
@@ -254,8 +257,226 @@ def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding
|
|
254 |
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
255 |
asr = asr_new
|
256 |
|
257 |
-
|
258 |
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
259 |
|
260 |
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from cached_path import cached_path
|
3 |
import nltk
|
4 |
+
import audresample
|
5 |
# nltk.download('punkt')
|
|
|
|
|
6 |
import numpy as np
|
7 |
np.random.seed(0)
|
8 |
import time
|
|
|
9 |
import yaml
|
10 |
import torch.nn.functional as F
|
11 |
import copy
|
12 |
import torchaudio
|
13 |
import librosa
|
14 |
from models import *
|
|
|
|
|
15 |
from munch import Munch
|
16 |
from torch import nn
|
17 |
from nltk.tokenize import word_tokenize
|
|
|
|
|
18 |
|
19 |
torch.manual_seed(0)
|
20 |
torch.backends.cudnn.benchmark = False
|
|
|
61 |
|
62 |
|
63 |
|
64 |
+
def alpha_num(f):
|
65 |
+
f = re.sub(' +', ' ', f) # delete spaces
|
66 |
+
f = re.sub(r'[^A-Z a-z0-9 ]+', '', f) # del non alpha num
|
67 |
+
return f
|
68 |
|
69 |
|
70 |
|
|
|
169 |
clamp=False
|
170 |
)
|
171 |
|
172 |
+
def inference(text,
|
173 |
+
ref_s,
|
174 |
+
alpha = 0.3,
|
175 |
+
beta = 0.7,
|
176 |
+
diffusion_steps=5,
|
177 |
+
embedding_scale=1,
|
178 |
+
use_gruut=False):
|
179 |
text = text.strip()
|
180 |
ps = global_phonemizer.phonemize([text])
|
181 |
# print(f'PHONEMIZER: {ps=}\n\n') #PHONEMIZER: ps=['ɐbˈɛbæbləm ']
|
|
|
257 |
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
258 |
asr = asr_new
|
259 |
|
260 |
+
x = model.decoder(asr,
|
261 |
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
|
262 |
|
263 |
|
264 |
+
x = x.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model
|
265 |
+
|
266 |
+
x /= np.abs(x).max() + 1e-7
|
267 |
+
|
268 |
+
return x
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
# ___________________________________________________________
|
274 |
+
|
275 |
+
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
|
276 |
+
# ___________________________________________________________
|
277 |
+
|
278 |
+
# -*- coding: utf-8 -*-
|
279 |
+
|
280 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
281 |
+
#
|
282 |
+
# This source code is licensed under the MIT license found in the
|
283 |
+
# LICENSE file in the root directory of this source tree.
|
284 |
+
|
285 |
+
import os
|
286 |
+
import re
|
287 |
+
import tempfile
|
288 |
+
import torch
|
289 |
+
import sys
|
290 |
+
import numpy as np
|
291 |
+
import audiofile
|
292 |
+
from huggingface_hub import hf_hub_download
|
293 |
+
|
294 |
+
# Setup TTS env
|
295 |
+
if "vits" not in sys.path:
|
296 |
+
sys.path.append("Modules/vits")
|
297 |
+
|
298 |
+
from Modules.vits import commons, utils
|
299 |
+
from Modules.vits.models import SynthesizerTrn
|
300 |
+
|
301 |
+
TTS_LANGUAGES = {}
|
302 |
+
# with open('_d.csv', 'w') as f2:
|
303 |
+
with open(f"Utils/all_langs.csv") as f:
|
304 |
+
for line in f:
|
305 |
+
iso, name = line.split(",", 1)
|
306 |
+
TTS_LANGUAGES[iso.strip()] = name.strip()
|
307 |
+
# f2.write(iso + ',' + name.replace("a S","")+'\n')
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
# LOAD hun / ron / serbian - rmc-script_latin / cyrillic-Carpathian (not Vlax)
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
def has_cyrillic(text):
|
317 |
+
# https://stackoverflow.com/questions/48255244/python-check-if-a-string-contains-cyrillic-characters
|
318 |
+
return bool(re.search('[\u0400-\u04FF]', text))
|
319 |
+
|
320 |
+
class TextForeign(object):
|
321 |
+
def __init__(self, vocab_file):
|
322 |
+
self.symbols = [
|
323 |
+
x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()
|
324 |
+
]
|
325 |
+
self.SPACE_ID = self.symbols.index(" ")
|
326 |
+
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
|
327 |
+
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}
|
328 |
+
|
329 |
+
def text_to_sequence(self, text, cleaner_names):
|
330 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
331 |
+
Args:
|
332 |
+
text: string to convert to a sequence
|
333 |
+
cleaner_names: names of the cleaner functions to run the text through
|
334 |
+
Returns:
|
335 |
+
List of integers corresponding to the symbols in the text
|
336 |
+
"""
|
337 |
+
sequence = []
|
338 |
+
clean_text = text.strip()
|
339 |
+
for symbol in clean_text:
|
340 |
+
symbol_id = self._symbol_to_id[symbol]
|
341 |
+
sequence += [symbol_id]
|
342 |
+
return sequence
|
343 |
+
|
344 |
+
def uromanize(self, text, uroman_pl):
|
345 |
+
iso = "xxx"
|
346 |
+
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
|
347 |
+
with open(tf.name, "w") as f:
|
348 |
+
f.write("\n".join([text]))
|
349 |
+
cmd = f"perl " + uroman_pl
|
350 |
+
cmd += f" -l {iso} "
|
351 |
+
cmd += f" < {tf.name} > {tf2.name}"
|
352 |
+
os.system(cmd)
|
353 |
+
outtexts = []
|
354 |
+
with open(tf2.name) as f:
|
355 |
+
for line in f:
|
356 |
+
line = re.sub(r"\s+", " ", line).strip()
|
357 |
+
outtexts.append(line)
|
358 |
+
outtext = outtexts[0]
|
359 |
+
return outtext
|
360 |
+
|
361 |
+
def get_text(self, text, hps):
|
362 |
+
text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
|
363 |
+
if hps.data.add_blank:
|
364 |
+
text_norm = commons.intersperse(text_norm, 0)
|
365 |
+
text_norm = torch.LongTensor(text_norm)
|
366 |
+
return text_norm
|
367 |
+
|
368 |
+
def filter_oov(self, text, lang=None):
|
369 |
+
text = self.preprocess_char(text, lang=lang)
|
370 |
+
val_chars = self._symbol_to_id
|
371 |
+
txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
|
372 |
+
return txt_filt
|
373 |
+
|
374 |
+
def preprocess_char(self, text, lang=None):
|
375 |
+
"""
|
376 |
+
Special treatement of characters in certain languages
|
377 |
+
"""
|
378 |
+
if lang == "ron":
|
379 |
+
text = text.replace("ț", "ţ")
|
380 |
+
print(f"{lang} (ț -> ţ): {text}")
|
381 |
+
return text
|
382 |
+
|
383 |
+
|
384 |
+
def foreign(text=None, lang='romanian', speed=None):
|
385 |
+
# TTS for non english languages supported by
|
386 |
+
# https://huggingface.co/spaces/mms-meta/MMS
|
387 |
+
|
388 |
+
if 'hun' in lang.lower():
|
389 |
+
|
390 |
+
lang_code = 'hun'
|
391 |
+
|
392 |
+
elif 'ser' in lang.lower():
|
393 |
+
|
394 |
+
if has_cyrillic(text):
|
395 |
+
|
396 |
+
lang_code = 'rmc-script_cyrillic' # romani carpathian (has also Vlax)
|
397 |
+
|
398 |
+
else:
|
399 |
+
|
400 |
+
lang_code = 'rmc-script_latin' # romani carpathian (has also Vlax)
|
401 |
+
|
402 |
+
elif 'rom' in lang.lower():
|
403 |
+
|
404 |
+
lang_code = 'ron'
|
405 |
+
speed = 1.24 if speed is None else speed
|
406 |
+
|
407 |
+
else:
|
408 |
+
lang_code = lang.split()[0].strip()
|
409 |
+
# Decoded Language
|
410 |
+
print(f'\n\nLANG {lang_code=}\n_____________________\n')
|
411 |
+
vocab_file = hf_hub_download(
|
412 |
+
repo_id="facebook/mms-tts",
|
413 |
+
filename="vocab.txt",
|
414 |
+
subfolder=f"models/{lang_code}",
|
415 |
+
)
|
416 |
+
config_file = hf_hub_download(
|
417 |
+
repo_id="facebook/mms-tts",
|
418 |
+
filename="config.json",
|
419 |
+
subfolder=f"models/{lang_code}",
|
420 |
+
)
|
421 |
+
g_pth = hf_hub_download(
|
422 |
+
repo_id="facebook/mms-tts",
|
423 |
+
filename="G_100000.pth",
|
424 |
+
subfolder=f"models/{lang_code}",
|
425 |
+
)
|
426 |
+
hps = utils.get_hparams_from_file(config_file)
|
427 |
+
text_mapper = TextForeign(vocab_file)
|
428 |
+
net_g = SynthesizerTrn(
|
429 |
+
len(text_mapper.symbols),
|
430 |
+
hps.data.filter_length // 2 + 1,
|
431 |
+
hps.train.segment_size // hps.data.hop_length,
|
432 |
+
**hps.model,
|
433 |
+
)
|
434 |
+
net_g.to(device)
|
435 |
+
_ = net_g.eval()
|
436 |
+
|
437 |
+
_ = utils.load_checkpoint(g_pth, net_g, None)
|
438 |
+
|
439 |
+
# TTS via MMS
|
440 |
+
|
441 |
+
is_uroman = hps.data.training_files.split(".")[-1] == "uroman"
|
442 |
+
|
443 |
+
if is_uroman:
|
444 |
+
uroman_dir = "Utils/uroman"
|
445 |
+
assert os.path.exists(uroman_dir)
|
446 |
+
uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl")
|
447 |
+
text = text_mapper.uromanize(text, uroman_pl)
|
448 |
+
|
449 |
+
text = text.lower()
|
450 |
+
text = text_mapper.filter_oov(text, lang=lang)
|
451 |
+
stn_tst = text_mapper.get_text(text, hps)
|
452 |
+
with torch.no_grad():
|
453 |
+
print(f'{speed=}\n\n\n\n_______________________________')
|
454 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
455 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
456 |
+
x = (
|
457 |
+
net_g.infer(
|
458 |
+
x_tst,
|
459 |
+
x_tst_lengths,
|
460 |
+
noise_scale=0.667,
|
461 |
+
noise_scale_w=0.8,
|
462 |
+
length_scale=1.0 / speed)[0][0, 0].cpu().float().numpy()
|
463 |
+
)
|
464 |
+
x /= np.abs(x).max() + 1e-7
|
465 |
+
|
466 |
+
# hyp = (hyp * 32768).astype(np.int16)
|
467 |
+
# x = hyp #, text
|
468 |
+
print(x.shape, x.min(), x.max(), hps.data.sampling_rate) # (hps.data.sampling_rate,
|
469 |
+
|
470 |
+
x = audresample.resample(signal=x.astype(np.float32),
|
471 |
+
original_rate=16000,
|
472 |
+
target_rate=24000)[0, :] # reshapes (64,) -> (1,64)
|
473 |
+
return x
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
# LANG = 'eng'
|
479 |
+
# _t = 'Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence'
|
480 |
+
|
481 |
+
# x = synthesize(text=_t, lang=LANG, speed=1.14)
|
482 |
+
# audiofile.write('_r.wav', x, 16000) # mms-tts = 16,000
|
tts.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import numpy as np
|
3 |
import argparse
|
4 |
import os
|
|
|
5 |
import requests
|
6 |
from pathlib import Path
|
7 |
Path('out/').mkdir(parents=True, exist_ok=True)
|
@@ -14,7 +15,10 @@ Path('out/').mkdir(parents=True, exist_ok=True)
|
|
14 |
# ==
|
15 |
|
16 |
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def command_line_args():
|
@@ -67,13 +71,13 @@ def command_line_args():
|
|
67 |
'--out_file',
|
68 |
help="Output file name.",
|
69 |
type=str,
|
70 |
-
default=
|
71 |
)
|
72 |
parser.add_argument(
|
73 |
-
'--
|
74 |
-
help='
|
75 |
type=str,
|
76 |
-
default=
|
77 |
)
|
78 |
return parser
|
79 |
|
@@ -87,7 +91,7 @@ def send_to_server(args):
|
|
87 |
'text': args.text,
|
88 |
'image': args.image,
|
89 |
'video': args.video,
|
90 |
-
'
|
91 |
# 'out_file': args.out_file # let serve save as temp
|
92 |
}
|
93 |
|
@@ -123,7 +127,7 @@ def send_to_server(args):
|
|
123 |
|
124 |
# --------------------- send this extra
|
125 |
|
126 |
-
print('Sending...\n')
|
127 |
|
128 |
response = requests.post(url, data=payload,
|
129 |
files=[(args.text, text_file),
|
@@ -132,20 +136,24 @@ def send_to_server(args):
|
|
132 |
(args.native, native_file)]) # NONEs do not arrive to servers dict
|
133 |
|
134 |
# Check the response from the server
|
135 |
-
if response.status_code == 200:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
else:
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
return response
|
144 |
|
145 |
|
146 |
def cli():
|
147 |
parser = command_line_args()
|
148 |
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
149 |
response = send_to_server(args)
|
150 |
|
151 |
with open(
|
@@ -154,7 +162,7 @@ def cli():
|
|
154 |
'wb'
|
155 |
) as f:
|
156 |
f.write(response.content)
|
157 |
-
print('REsponse AT client []\n----------------------------', response.headers)
|
158 |
|
159 |
|
160 |
if __name__ == '__main__':
|
|
|
2 |
import numpy as np
|
3 |
import argparse
|
4 |
import os
|
5 |
+
import re
|
6 |
import requests
|
7 |
from pathlib import Path
|
8 |
Path('out/').mkdir(parents=True, exist_ok=True)
|
|
|
15 |
# ==
|
16 |
|
17 |
|
18 |
+
def alpha_num(f):
|
19 |
+
f = re.sub(' +', ' ', f) # delete spaces
|
20 |
+
f = re.sub(r'[^A-Za-z0-9 ]+', '', f) # del non alpha num
|
21 |
+
return f
|
22 |
|
23 |
|
24 |
def command_line_args():
|
|
|
71 |
'--out_file',
|
72 |
help="Output file name.",
|
73 |
type=str,
|
74 |
+
default=None
|
75 |
)
|
76 |
parser.add_argument(
|
77 |
+
'--speed',
|
78 |
+
help='speec of TTS (only used in Non English voices).',
|
79 |
type=str,
|
80 |
+
default=1.24,
|
81 |
)
|
82 |
return parser
|
83 |
|
|
|
91 |
'text': args.text,
|
92 |
'image': args.image,
|
93 |
'video': args.video,
|
94 |
+
'speed': args.speed,
|
95 |
# 'out_file': args.out_file # let serve save as temp
|
96 |
}
|
97 |
|
|
|
127 |
|
128 |
# --------------------- send this extra
|
129 |
|
130 |
+
# print('Sending...\n')
|
131 |
|
132 |
response = requests.post(url, data=payload,
|
133 |
files=[(args.text, text_file),
|
|
|
136 |
(args.native, native_file)]) # NONEs do not arrive to servers dict
|
137 |
|
138 |
# Check the response from the server
|
139 |
+
# if response.status_code == 200:
|
140 |
+
# print("\nRequest was successful!")
|
141 |
+
# # print("Response:", respdonse.__dict__.keys(), '\n=====\n')
|
142 |
+
|
143 |
+
# else:
|
144 |
+
# print("Failed to send the request")
|
145 |
+
# print("Status Code:", response.status_code)
|
146 |
+
# print("Response:", response.text)
|
147 |
return response
|
148 |
|
149 |
|
150 |
def cli():
|
151 |
parser = command_line_args()
|
152 |
args = parser.parse_args()
|
153 |
+
|
154 |
+
if args.out_file is None:
|
155 |
+
vid = alpha_num(args.video) if args.video else f'{np.random.rand()*1e7}'[:6]
|
156 |
+
args.out_file = alpha_num(args.text) + '_' + alpha_num(args.voice) + '_' + vid
|
157 |
response = send_to_server(args)
|
158 |
|
159 |
with open(
|
|
|
162 |
'wb'
|
163 |
) as f:
|
164 |
f.write(response.content)
|
165 |
+
# print('REsponse AT client []\n----------------------------', response.headers)
|
166 |
|
167 |
|
168 |
if __name__ == '__main__':
|