voice sin amplify
Browse files- Modules/hifigan.py +122 -112
- msinference.py +1 -1
- tts.py +1 -1
Modules/hifigan.py
CHANGED
@@ -1,26 +1,29 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
import torch.nn as nn
|
4 |
-
from torch.nn import Conv1d, ConvTranspose1d
|
5 |
-
from torch.nn.utils import weight_norm, remove_weight_norm
|
6 |
import math
|
7 |
import numpy as np
|
8 |
|
9 |
|
10 |
LRELU_SLOPE = 0.1
|
11 |
|
|
|
12 |
def get_padding(kernel_size, dilation=1):
|
13 |
return int((kernel_size*dilation - dilation)/2)
|
14 |
|
15 |
-
|
|
|
16 |
length=None):
|
17 |
x = x.repeat(1, 1, int(length / x.shape[2]) + 1)[:, :, :length]
|
18 |
return x
|
19 |
|
|
|
20 |
class AdaIN1d(nn.Module):
|
21 |
-
|
22 |
# used by HiFiGan & ProsodyPredictor
|
23 |
-
|
24 |
def __init__(self, style_dim, num_features):
|
25 |
super().__init__()
|
26 |
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
@@ -30,20 +33,15 @@ class AdaIN1d(nn.Module):
|
|
30 |
|
31 |
# x = torch.Size([1, 512, 248]) same as output
|
32 |
# s = torch.Size([1, 7, 1, 128])
|
33 |
-
|
34 |
-
|
35 |
s = self.fc(s.transpose(1, 2)).transpose(1, 2)
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
s = _tile(s, length=x.shape[2])
|
40 |
-
|
41 |
gamma, beta = torch.chunk(s, chunks=2, dim=1)
|
42 |
return (1+gamma) * self.norm(x) + beta
|
43 |
|
44 |
|
45 |
-
|
46 |
-
|
47 |
class AdaINResBlock1(torch.nn.Module):
|
48 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
49 |
super(AdaINResBlock1, self).__init__()
|
@@ -66,29 +64,30 @@ class AdaINResBlock1(torch.nn.Module):
|
|
66 |
padding=get_padding(kernel_size, 1)))
|
67 |
])
|
68 |
# self.convs2.apply(init_weights)
|
69 |
-
|
70 |
self.adain1 = nn.ModuleList([
|
71 |
AdaIN1d(style_dim, channels),
|
72 |
AdaIN1d(style_dim, channels),
|
73 |
AdaIN1d(style_dim, channels),
|
74 |
])
|
75 |
-
|
76 |
self.adain2 = nn.ModuleList([
|
77 |
AdaIN1d(style_dim, channels),
|
78 |
AdaIN1d(style_dim, channels),
|
79 |
AdaIN1d(style_dim, channels),
|
80 |
])
|
81 |
-
|
82 |
-
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
83 |
-
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
84 |
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def forward(self, x, s):
|
87 |
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
88 |
xt = n1(x, s) # THIS IS ADAIN - EXPECTS conv1d dims
|
89 |
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
90 |
xt = c1(xt)
|
91 |
-
xt = n2(xt, s)
|
92 |
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
93 |
xt = c2(xt)
|
94 |
x = xt + x
|
@@ -99,13 +98,14 @@ class AdaINResBlock1(torch.nn.Module):
|
|
99 |
remove_weight_norm(l)
|
100 |
for l in self.convs2:
|
101 |
remove_weight_norm(l)
|
102 |
-
|
|
|
103 |
class SineGen(torch.nn.Module):
|
104 |
|
105 |
def __init__(self,
|
106 |
-
samp_rate=24000,
|
107 |
-
upsample_scale=300,
|
108 |
-
harmonic_num=8,
|
109 |
voiced_threshold=10):
|
110 |
|
111 |
super(SineGen, self).__init__()
|
@@ -116,60 +116,66 @@ class SineGen(torch.nn.Module):
|
|
116 |
|
117 |
def _f02sine(self, f0_values):
|
118 |
# --
|
119 |
-
# 134 HIFI
|
120 |
# torch.Size([1, 145200, 9])
|
121 |
# torch.Size([1, 145200, 9]) torch.Size([1, 145200, 9]) HIFi
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
135 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
136 |
sines = torch.sin(phase)
|
137 |
return sines
|
138 |
|
139 |
def forward(self, f0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) # [1, 145200, 9]
|
144 |
-
|
145 |
-
sine_waves = self._f02sine(fn) * .01 # .007 # very important effect DEFAULT=0.1 very sensitive to speaker CHECK COnTINUITY FROM SEGMENTS IN AUDIOBOOK
|
146 |
|
147 |
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
148 |
-
|
149 |
-
return sine_waves * uv
|
|
|
150 |
|
151 |
class SourceModuleHnNSF(torch.nn.Module):
|
152 |
|
153 |
-
def __init__(self, harmonic_num=8):
|
154 |
-
|
155 |
super(SourceModuleHnNSF, self).__init__()
|
156 |
self.l_sin_gen = SineGen()
|
157 |
-
|
|
|
158 |
self.l_tanh = torch.nn.Tanh()
|
159 |
|
160 |
def forward(self, x):
|
161 |
# print(' HNnSF', x.shape) # why this is [1, 300, 1, 535800]
|
162 |
sine_wavs = self.l_sin_gen(x)
|
163 |
-
|
|
|
164 |
return sine_merge
|
165 |
|
|
|
166 |
class Generator(torch.nn.Module):
|
167 |
def __init__(self,
|
168 |
style_dim,
|
169 |
-
resblock_kernel_sizes,
|
170 |
-
upsample_rates,
|
171 |
-
upsample_initial_channel,
|
172 |
-
resblock_dilation_sizes,
|
173 |
upsample_kernel_sizes):
|
174 |
super(Generator, self).__init__()
|
175 |
self.num_kernels = len(resblock_kernel_sizes)
|
@@ -182,48 +188,52 @@ class Generator(torch.nn.Module):
|
|
182 |
|
183 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
184 |
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
185 |
-
|
186 |
-
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
191 |
stride_f0 = np.prod(upsample_rates[i + 1:])
|
192 |
self.noise_convs.append(Conv1d(
|
193 |
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
194 |
-
self.noise_res.append(AdaINResBlock1(
|
|
|
195 |
else:
|
196 |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
197 |
-
self.noise_res.append(AdaINResBlock1(
|
198 |
-
|
|
|
199 |
self.resblocks = nn.ModuleList()
|
200 |
-
|
201 |
self.alphas = nn.ParameterList()
|
202 |
-
self.alphas.append(nn.Parameter(
|
203 |
-
|
|
|
204 |
for i in range(len(self.ups)):
|
205 |
ch = upsample_initial_channel//(2**(i+1))
|
206 |
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
207 |
-
|
208 |
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
209 |
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
|
210 |
|
211 |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
212 |
|
213 |
-
|
214 |
def forward(self, x, s, f0):
|
215 |
-
|
216 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
217 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
218 |
-
|
219 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
220 |
|
221 |
-
|
222 |
-
|
|
|
223 |
har_source = har_source.transpose(1, 2)
|
224 |
|
225 |
for i in range(self.num_upsamples):
|
226 |
-
|
227 |
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
228 |
x_source = self.noise_convs[i](har_source)
|
229 |
x_source = self.noise_res[i](x_source, s)
|
@@ -234,7 +244,7 @@ class Generator(torch.nn.Module):
|
|
234 |
|
235 |
xs = None
|
236 |
for j in range(self.num_kernels):
|
237 |
-
|
238 |
if xs is None:
|
239 |
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
240 |
else:
|
@@ -255,11 +265,11 @@ class Generator(torch.nn.Module):
|
|
255 |
remove_weight_norm(self.conv_pre)
|
256 |
remove_weight_norm(self.conv_post)
|
257 |
|
258 |
-
|
259 |
class AdainResBlk1d(nn.Module):
|
260 |
-
|
261 |
# also used in ProsodyPredictor()
|
262 |
-
|
263 |
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
264 |
upsample='none', dropout_p=0.0):
|
265 |
super().__init__()
|
@@ -267,20 +277,21 @@ class AdainResBlk1d(nn.Module):
|
|
267 |
self.upsample_type = upsample
|
268 |
self.upsample = UpSample1d(upsample)
|
269 |
self.learned_sc = dim_in != dim_out
|
270 |
-
self._build_weights(dim_in, dim_out, style_dim)
|
271 |
if upsample == 'none':
|
272 |
self.pool = nn.Identity()
|
273 |
else:
|
274 |
-
self.pool = weight_norm(nn.ConvTranspose1d(
|
275 |
-
|
276 |
-
|
277 |
def _build_weights(self, dim_in, dim_out, style_dim):
|
278 |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
279 |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
280 |
self.norm1 = AdaIN1d(style_dim, dim_in)
|
281 |
self.norm2 = AdaIN1d(style_dim, dim_out)
|
282 |
if self.learned_sc:
|
283 |
-
self.conv1x1 = weight_norm(
|
|
|
284 |
|
285 |
def _shortcut(self, x):
|
286 |
x = self.upsample(x)
|
@@ -302,7 +313,8 @@ class AdainResBlk1d(nn.Module):
|
|
302 |
out = self._residual(x, s)
|
303 |
out = (out + self._shortcut(x)) / math.sqrt(2)
|
304 |
return out
|
305 |
-
|
|
|
306 |
class UpSample1d(nn.Module):
|
307 |
def __init__(self, layer_type):
|
308 |
super().__init__()
|
@@ -314,64 +326,62 @@ class UpSample1d(nn.Module):
|
|
314 |
else:
|
315 |
return F.interpolate(x, scale_factor=2, mode='nearest')
|
316 |
|
|
|
317 |
class Decoder(nn.Module):
|
318 |
-
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
super().__init__()
|
325 |
-
|
326 |
self.decode = nn.ModuleList()
|
327 |
-
|
328 |
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
329 |
-
|
330 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
331 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
332 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
333 |
-
self.decode.append(AdainResBlk1d(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
-
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) # smooth
|
336 |
-
|
337 |
-
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
338 |
-
|
339 |
self.asr_res = nn.Sequential(
|
340 |
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
341 |
)
|
342 |
-
|
343 |
-
|
344 |
-
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
345 |
|
346 |
-
|
|
|
|
|
347 |
def forward(self, asr=None, F0_curve=None, N=None, s=None):
|
348 |
-
|
349 |
-
print('p', asr.shape, F0_curve.shape, N.shape)
|
350 |
F0 = self.F0_conv(F0_curve)
|
351 |
N = self.N_conv(N)
|
352 |
-
|
353 |
-
|
354 |
# print(asr.shape, F0.shape, N.shape, 'TF')
|
355 |
-
|
356 |
-
|
357 |
x = torch.cat([asr, F0, N], axis=1)
|
358 |
-
|
359 |
x = self.encode(x, s)
|
360 |
-
|
361 |
asr_res = self.asr_res(asr)
|
362 |
-
|
363 |
res = True
|
364 |
for block in self.decode:
|
365 |
if res:
|
366 |
-
|
367 |
-
|
368 |
x = torch.cat([x, asr_res, F0, N], axis=1)
|
369 |
-
|
370 |
x = block(x, s)
|
371 |
if block.upsample_type != "none":
|
372 |
res = False
|
373 |
-
|
374 |
x = self.generator(x, s, F0_curve)
|
375 |
return x
|
376 |
-
|
377 |
-
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
import torch.nn as nn
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
6 |
import math
|
7 |
import numpy as np
|
8 |
|
9 |
|
10 |
LRELU_SLOPE = 0.1
|
11 |
|
12 |
+
|
13 |
def get_padding(kernel_size, dilation=1):
|
14 |
return int((kernel_size*dilation - dilation)/2)
|
15 |
|
16 |
+
|
17 |
+
def _tile(x,
|
18 |
length=None):
|
19 |
x = x.repeat(1, 1, int(length / x.shape[2]) + 1)[:, :, :length]
|
20 |
return x
|
21 |
|
22 |
+
|
23 |
class AdaIN1d(nn.Module):
|
24 |
+
|
25 |
# used by HiFiGan & ProsodyPredictor
|
26 |
+
|
27 |
def __init__(self, style_dim, num_features):
|
28 |
super().__init__()
|
29 |
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
|
|
33 |
|
34 |
# x = torch.Size([1, 512, 248]) same as output
|
35 |
# s = torch.Size([1, 7, 1, 128])
|
36 |
+
|
|
|
37 |
s = self.fc(s.transpose(1, 2)).transpose(1, 2)
|
38 |
+
|
|
|
|
|
39 |
s = _tile(s, length=x.shape[2])
|
40 |
+
|
41 |
gamma, beta = torch.chunk(s, chunks=2, dim=1)
|
42 |
return (1+gamma) * self.norm(x) + beta
|
43 |
|
44 |
|
|
|
|
|
45 |
class AdaINResBlock1(torch.nn.Module):
|
46 |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
47 |
super(AdaINResBlock1, self).__init__()
|
|
|
64 |
padding=get_padding(kernel_size, 1)))
|
65 |
])
|
66 |
# self.convs2.apply(init_weights)
|
67 |
+
|
68 |
self.adain1 = nn.ModuleList([
|
69 |
AdaIN1d(style_dim, channels),
|
70 |
AdaIN1d(style_dim, channels),
|
71 |
AdaIN1d(style_dim, channels),
|
72 |
])
|
73 |
+
|
74 |
self.adain2 = nn.ModuleList([
|
75 |
AdaIN1d(style_dim, channels),
|
76 |
AdaIN1d(style_dim, channels),
|
77 |
AdaIN1d(style_dim, channels),
|
78 |
])
|
|
|
|
|
|
|
79 |
|
80 |
+
self.alpha1 = nn.ParameterList(
|
81 |
+
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
82 |
+
self.alpha2 = nn.ParameterList(
|
83 |
+
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
84 |
|
85 |
def forward(self, x, s):
|
86 |
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
87 |
xt = n1(x, s) # THIS IS ADAIN - EXPECTS conv1d dims
|
88 |
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
89 |
xt = c1(xt)
|
90 |
+
xt = n2(xt, s) # THIS IS ADAIN - EXPECTS conv1d dims
|
91 |
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
92 |
xt = c2(xt)
|
93 |
x = xt + x
|
|
|
98 |
remove_weight_norm(l)
|
99 |
for l in self.convs2:
|
100 |
remove_weight_norm(l)
|
101 |
+
|
102 |
+
|
103 |
class SineGen(torch.nn.Module):
|
104 |
|
105 |
def __init__(self,
|
106 |
+
samp_rate=24000,
|
107 |
+
upsample_scale=300,
|
108 |
+
harmonic_num=8, # HARDCODED due to nn.Linear() of SourceModuleHnNSF
|
109 |
voiced_threshold=10):
|
110 |
|
111 |
super(SineGen, self).__init__()
|
|
|
116 |
|
117 |
def _f02sine(self, f0_values):
|
118 |
# --
|
119 |
+
# 134 HIFI
|
120 |
# torch.Size([1, 145200, 9])
|
121 |
# torch.Size([1, 145200, 9]) torch.Size([1, 145200, 9]) HIFi
|
122 |
+
|
123 |
+
# modulo of negative f0_values => -21 % 10 = 9 as -3*10 + 9 = 21 NOTICE THAT f0_values IS SIGNED
|
124 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
125 |
+
|
|
|
|
|
|
|
126 |
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
127 |
+
scale_factor=1/self.upsample_scale,
|
128 |
+
mode="linear").transpose(1, 2)
|
129 |
+
|
130 |
+
# 1.89 sounds also nice has woofer at punctuation
|
131 |
+
phase = torch.cumsum(rad_values, dim=1) * 1.84 * np.pi
|
132 |
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
133 |
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
134 |
sines = torch.sin(phase)
|
135 |
return sines
|
136 |
|
137 |
def forward(self, f0):
|
138 |
+
# print('____________________________________\nF0 F0\n', f0.abs().mean(), f0.mean(), f0.max(), f0.min()) # male voices sound less muffed via higher scaler in sine_waves
|
139 |
+
# f0 is already full length - [1, 142600, 1]
|
140 |
+
|
141 |
+
amplif = .0104 if f0.abs().mean() < 100 else .009 # vary amplif based on f0.abs().mean() - voice sensitive
|
142 |
+
|
143 |
+
fn = torch.multiply(f0, torch.FloatTensor(
|
144 |
+
[[range(1, self.harmonic_num + 2)]]).to(f0.device)) # [1, 145200, 9]
|
145 |
|
146 |
+
# .007 # very important effect DEFAULT=0.1 very sensitive to speaker - heuristically
|
147 |
+
sine_waves = self._f02sine(fn) * amplif # .009
|
|
|
|
|
|
|
148 |
|
149 |
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
150 |
+
|
151 |
+
return sine_waves * uv
|
152 |
+
|
153 |
|
154 |
class SourceModuleHnNSF(torch.nn.Module):
|
155 |
|
156 |
+
def __init__(self, harmonic_num=8):
|
157 |
+
|
158 |
super(SourceModuleHnNSF, self).__init__()
|
159 |
self.l_sin_gen = SineGen()
|
160 |
+
# harmonic=8 is hard fixed due to this nn.Linear()
|
161 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
162 |
self.l_tanh = torch.nn.Tanh()
|
163 |
|
164 |
def forward(self, x):
|
165 |
# print(' HNnSF', x.shape) # why this is [1, 300, 1, 535800]
|
166 |
sine_wavs = self.l_sin_gen(x)
|
167 |
+
# This linear sums all 9 harmonics
|
168 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
169 |
return sine_merge
|
170 |
|
171 |
+
|
172 |
class Generator(torch.nn.Module):
|
173 |
def __init__(self,
|
174 |
style_dim,
|
175 |
+
resblock_kernel_sizes,
|
176 |
+
upsample_rates,
|
177 |
+
upsample_initial_channel,
|
178 |
+
resblock_dilation_sizes,
|
179 |
upsample_kernel_sizes):
|
180 |
super(Generator, self).__init__()
|
181 |
self.num_kernels = len(resblock_kernel_sizes)
|
|
|
188 |
|
189 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
190 |
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
191 |
+
|
192 |
+
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
193 |
+
upsample_initial_channel//(
|
194 |
+
2**(i+1)),
|
195 |
+
k, u, padding=(u//2 + u % 2), output_padding=u % 2)))
|
196 |
+
|
197 |
+
if i + 1 < len(upsample_rates):
|
198 |
stride_f0 = np.prod(upsample_rates[i + 1:])
|
199 |
self.noise_convs.append(Conv1d(
|
200 |
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
201 |
+
self.noise_res.append(AdaINResBlock1(
|
202 |
+
c_cur, 7, [1, 3, 5], style_dim))
|
203 |
else:
|
204 |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
205 |
+
self.noise_res.append(AdaINResBlock1(
|
206 |
+
c_cur, 11, [1, 3, 5], style_dim))
|
207 |
+
|
208 |
self.resblocks = nn.ModuleList()
|
209 |
+
|
210 |
self.alphas = nn.ParameterList()
|
211 |
+
self.alphas.append(nn.Parameter(
|
212 |
+
torch.ones(1, upsample_initial_channel, 1)))
|
213 |
+
|
214 |
for i in range(len(self.ups)):
|
215 |
ch = upsample_initial_channel//(2**(i+1))
|
216 |
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
217 |
+
|
218 |
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
219 |
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
|
220 |
|
221 |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
222 |
|
|
|
223 |
def forward(self, x, s, f0):
|
224 |
+
|
225 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 484]) GENERAT 249
|
226 |
f0 = self.f0_upsamp(f0).transpose(1, 2)
|
227 |
+
|
228 |
# x.shape=torch.Size([1, 512, 484]) s.shape=torch.Size([1, 1, 1, 128]) f0.shape=torch.Size([1, 145200, 1]) GENERAT 253
|
229 |
|
230 |
+
# [1, 145400, 1] f0 enters already upsampled to full wav 24kHz length
|
231 |
+
har_source = self.m_source(f0)
|
232 |
+
|
233 |
har_source = har_source.transpose(1, 2)
|
234 |
|
235 |
for i in range(self.num_upsamples):
|
236 |
+
|
237 |
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
238 |
x_source = self.noise_convs[i](har_source)
|
239 |
x_source = self.noise_res[i](x_source, s)
|
|
|
244 |
|
245 |
xs = None
|
246 |
for j in range(self.num_kernels):
|
247 |
+
|
248 |
if xs is None:
|
249 |
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
250 |
else:
|
|
|
265 |
remove_weight_norm(self.conv_pre)
|
266 |
remove_weight_norm(self.conv_post)
|
267 |
|
268 |
+
|
269 |
class AdainResBlk1d(nn.Module):
|
270 |
+
|
271 |
# also used in ProsodyPredictor()
|
272 |
+
|
273 |
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
274 |
upsample='none', dropout_p=0.0):
|
275 |
super().__init__()
|
|
|
277 |
self.upsample_type = upsample
|
278 |
self.upsample = UpSample1d(upsample)
|
279 |
self.learned_sc = dim_in != dim_out
|
280 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
281 |
if upsample == 'none':
|
282 |
self.pool = nn.Identity()
|
283 |
else:
|
284 |
+
self.pool = weight_norm(nn.ConvTranspose1d(
|
285 |
+
dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
286 |
+
|
287 |
def _build_weights(self, dim_in, dim_out, style_dim):
|
288 |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
289 |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
290 |
self.norm1 = AdaIN1d(style_dim, dim_in)
|
291 |
self.norm2 = AdaIN1d(style_dim, dim_out)
|
292 |
if self.learned_sc:
|
293 |
+
self.conv1x1 = weight_norm(
|
294 |
+
nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
295 |
|
296 |
def _shortcut(self, x):
|
297 |
x = self.upsample(x)
|
|
|
313 |
out = self._residual(x, s)
|
314 |
out = (out + self._shortcut(x)) / math.sqrt(2)
|
315 |
return out
|
316 |
+
|
317 |
+
|
318 |
class UpSample1d(nn.Module):
|
319 |
def __init__(self, layer_type):
|
320 |
super().__init__()
|
|
|
326 |
else:
|
327 |
return F.interpolate(x, scale_factor=2, mode='nearest')
|
328 |
|
329 |
+
|
330 |
class Decoder(nn.Module):
|
331 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
332 |
+
resblock_kernel_sizes=[3, 7, 11],
|
333 |
+
upsample_rates=[10, 5, 3, 2],
|
334 |
+
upsample_initial_channel=512,
|
335 |
+
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
336 |
+
upsample_kernel_sizes=[20, 10, 6, 4]):
|
337 |
super().__init__()
|
338 |
+
|
339 |
self.decode = nn.ModuleList()
|
340 |
+
|
341 |
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
342 |
+
|
343 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
344 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
345 |
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
346 |
+
self.decode.append(AdainResBlk1d(
|
347 |
+
1024 + 2 + 64, 512, style_dim, upsample=True))
|
348 |
+
|
349 |
+
self.F0_conv = weight_norm(
|
350 |
+
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)) # smooth
|
351 |
+
|
352 |
+
self.N_conv = weight_norm(
|
353 |
+
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
354 |
|
|
|
|
|
|
|
|
|
355 |
self.asr_res = nn.Sequential(
|
356 |
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
357 |
)
|
|
|
|
|
|
|
358 |
|
359 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
360 |
+
upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
361 |
+
|
362 |
def forward(self, asr=None, F0_curve=None, N=None, s=None):
|
363 |
+
|
364 |
+
# print('p', asr.shape, F0_curve.shape, N.shape)
|
365 |
F0 = self.F0_conv(F0_curve)
|
366 |
N = self.N_conv(N)
|
367 |
+
|
|
|
368 |
# print(asr.shape, F0.shape, N.shape, 'TF')
|
369 |
+
|
|
|
370 |
x = torch.cat([asr, F0, N], axis=1)
|
371 |
+
|
372 |
x = self.encode(x, s)
|
373 |
+
|
374 |
asr_res = self.asr_res(asr)
|
375 |
+
|
376 |
res = True
|
377 |
for block in self.decode:
|
378 |
if res:
|
379 |
+
|
|
|
380 |
x = torch.cat([x, asr_res, F0, N], axis=1)
|
381 |
+
|
382 |
x = block(x, s)
|
383 |
if block.upsample_type != "none":
|
384 |
res = False
|
385 |
+
|
386 |
x = self.generator(x, s, F0_curve)
|
387 |
return x
|
|
|
|
msinference.py
CHANGED
@@ -409,7 +409,7 @@ def foreign(text=None, # split sentences here so we can prepend a txt for germ
|
|
409 |
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 200, break_long_words=0)] # prepend txt snippet
|
410 |
# assert that it chooses unique voice
|
411 |
else:
|
412 |
-
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text,
|
413 |
# for non deu MMS TTS lang.
|
414 |
|
415 |
for _t in text:
|
|
|
409 |
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 200, break_long_words=0)] # prepend txt snippet
|
410 |
# assert that it chooses unique voice
|
411 |
else:
|
412 |
+
text = [sub_sent+' ' for sub_sent in textwrap.wrap(text, 640, break_long_words=0)] # allow longer non split text
|
413 |
# for non deu MMS TTS lang.
|
414 |
|
415 |
for _t in text:
|
tts.py
CHANGED
@@ -85,7 +85,7 @@ def command_line_args():
|
|
85 |
'--speed',
|
86 |
help='speec of TTS (only used in Non English voices).',
|
87 |
type=str,
|
88 |
-
default=1.
|
89 |
)
|
90 |
return parser
|
91 |
|
|
|
85 |
'--speed',
|
86 |
help='speec of TTS (only used in Non English voices).',
|
87 |
type=str,
|
88 |
+
default=1.44,
|
89 |
)
|
90 |
return parser
|
91 |
|