2 figs 1x/4x for libri
Browse files- tts_harvard.py +10 -10
- visualize_tts_plesantness.py +135 -129
tts_harvard.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
# Synthesize all Harvard Lists 77x lists of 10x sentences to single .wav
|
2 |
|
3 |
# 1. using mimic3 english 1x/4x non-english 1x/4x
|
4 |
-
#
|
5 |
|
6 |
import soundfile
|
7 |
import json
|
@@ -89,22 +89,22 @@ synthetic_wav_paths_foreign_4x = ['./mimic3_foreign_4x/' + i for i in os.listdir
|
|
89 |
|
90 |
|
91 |
|
92 |
-
for audio_prompt in ['
|
93 |
-
'
|
94 |
'human',
|
95 |
'foreign',
|
96 |
-
'
|
97 |
-
if not os.path.isfile(f'{audio_prompt}
|
98 |
total_audio = []
|
99 |
ix = 0
|
100 |
-
for list_of_10 in harvard_individual_sentences[:
|
101 |
# long_sentence = ' '.join(list_of_10['sentences'])
|
102 |
# harvard.append(long_sentence.replace('.', ' '))
|
103 |
for text in list_of_10['sentences']:
|
104 |
-
if audio_prompt == '
|
105 |
style_vec = msinference.compute_style(
|
106 |
synthetic_wav_paths[ix % 134])
|
107 |
-
elif audio_prompt == '
|
108 |
style_vec = msinference.compute_style(
|
109 |
synthetic_wav_paths_4x[ix % 134])
|
110 |
elif audio_prompt == 'human':
|
@@ -113,7 +113,7 @@ for audio_prompt in ['mimic3',
|
|
113 |
elif audio_prompt == 'foreign':
|
114 |
style_vec = msinference.compute_style(
|
115 |
synthetic_wav_paths_foreign[ix % 204])
|
116 |
-
elif audio_prompt == '
|
117 |
style_vec = msinference.compute_style(
|
118 |
synthetic_wav_paths_foreign_4x[ix % 204])
|
119 |
else:
|
@@ -133,7 +133,7 @@ for audio_prompt in ['mimic3',
|
|
133 |
print('_____________________')
|
134 |
# -- for 77x lists
|
135 |
total_audio = np.concatenate(total_audio)
|
136 |
-
soundfile.write(f'{audio_prompt}
|
137 |
|
138 |
else:
|
139 |
print('\nALREADY EXISTS\n')
|
|
|
1 |
# Synthesize all Harvard Lists 77x lists of 10x sentences to single .wav
|
2 |
|
3 |
# 1. using mimic3 english 1x/4x non-english 1x/4x
|
4 |
+
# Call visualize_tts_plesantness.py for 4figs [eng 1x/4x vs human, non-eng 1x/4x vs human-libri]
|
5 |
|
6 |
import soundfile
|
7 |
import json
|
|
|
89 |
|
90 |
|
91 |
|
92 |
+
for audio_prompt in ['english',
|
93 |
+
'english_4x',
|
94 |
'human',
|
95 |
'foreign',
|
96 |
+
'foreign_4x']:
|
97 |
+
if not os.path.isfile(f'{audio_prompt}_z.wav'):
|
98 |
total_audio = []
|
99 |
ix = 0
|
100 |
+
for list_of_10 in harvard_individual_sentences[:10000]:
|
101 |
# long_sentence = ' '.join(list_of_10['sentences'])
|
102 |
# harvard.append(long_sentence.replace('.', ' '))
|
103 |
for text in list_of_10['sentences']:
|
104 |
+
if audio_prompt == 'english':
|
105 |
style_vec = msinference.compute_style(
|
106 |
synthetic_wav_paths[ix % 134])
|
107 |
+
elif audio_prompt == 'english_4x':
|
108 |
style_vec = msinference.compute_style(
|
109 |
synthetic_wav_paths_4x[ix % 134])
|
110 |
elif audio_prompt == 'human':
|
|
|
113 |
elif audio_prompt == 'foreign':
|
114 |
style_vec = msinference.compute_style(
|
115 |
synthetic_wav_paths_foreign[ix % 204])
|
116 |
+
elif audio_prompt == 'foreign_4x':
|
117 |
style_vec = msinference.compute_style(
|
118 |
synthetic_wav_paths_foreign_4x[ix % 204])
|
119 |
else:
|
|
|
133 |
print('_____________________')
|
134 |
# -- for 77x lists
|
135 |
total_audio = np.concatenate(total_audio)
|
136 |
+
soundfile.write(f'{audio_prompt}_z.wav', total_audio, 24000)
|
137 |
|
138 |
else:
|
139 |
print('\nALREADY EXISTS\n')
|
visualize_tts_plesantness.py
CHANGED
@@ -9,6 +9,13 @@
|
|
9 |
# human_770.wav
|
10 |
# mimic3_770.wav
|
11 |
# mimic3_speedup_770.wav
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
import pandas as pd
|
13 |
import os
|
14 |
|
@@ -80,13 +87,7 @@ def _sigmoid(x):
|
|
80 |
# wavs are generated concat and plot time-series?
|
81 |
|
82 |
# for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
|
83 |
-
for long_audio in
|
84 |
-
'mimic3_k.wav',
|
85 |
-
'mimic_speed_k.wav',
|
86 |
-
'human_k.wav'
|
87 |
-
'foreign_k.wav',
|
88 |
-
'foreign_speed_k.wav',
|
89 |
-
]:
|
90 |
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
|
91 |
if not os.path.exists(file_interface):
|
92 |
|
@@ -241,6 +242,9 @@ for long_audio in [
|
|
241 |
else:
|
242 |
print(file_interface, 'FOUND')
|
243 |
# df_pred = pd.read_pickle(file_interface)
|
|
|
|
|
|
|
244 |
# ===============================================================================
|
245 |
# V I S U A L S by loading all 3 pkl - mimic3 - speedup - human pd
|
246 |
#
|
@@ -249,13 +253,7 @@ for long_audio in [
|
|
249 |
|
250 |
preds = {}
|
251 |
SHORTEST_PD = 100000 # segments
|
252 |
-
for long_audio in
|
253 |
-
# 'mimic3.wav',
|
254 |
-
# 'mimic3_speedup.wav',
|
255 |
-
'human_770.wav', # 'mimic3_all_77.wav', #
|
256 |
-
'mimic3_770.wav',
|
257 |
-
'mimic3_speed_770.wav'
|
258 |
-
]:
|
259 |
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
|
260 |
y = pd.read_pickle(file_interface)
|
261 |
preds[long_audio] = y
|
@@ -273,169 +271,177 @@ for k,v in preds.items():
|
|
273 |
p.index = p.index.map(mapper = (lambda x: x.total_seconds()))
|
274 |
preds[k] = p
|
275 |
|
276 |
-
print(p, '\n\n\n\n \n')
|
277 |
-
|
|
|
278 |
|
279 |
-
# Show plots by 2
|
280 |
|
281 |
-
fig, ax = plt.subplots(nrows=8, ncols=2, figsize=(4.6, 24), gridspec_kw={'hspace': 0, 'wspace': .04})
|
282 |
|
283 |
|
284 |
-
#
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
'valence']):
|
290 |
|
291 |
-
|
|
|
292 |
|
293 |
-
ax[j, 0].plot(time_stamp, preds['mimic3_770.wav'][dim],
|
294 |
-
color=(0,104/255,139/255),
|
295 |
-
label='mean_1',
|
296 |
-
linewidth=2)
|
297 |
-
ax[j, 0].fill_between(time_stamp,
|
298 |
|
299 |
-
|
300 |
-
preds['human_770.wav'][dim],
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
|
320 |
-
|
321 |
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
|
329 |
-
|
330 |
-
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
|
341 |
|
342 |
-
|
343 |
|
344 |
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
|
352 |
|
353 |
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
# CATEGORIE
|
358 |
|
359 |
|
360 |
|
361 |
|
362 |
|
363 |
-
time_stamp = preds['
|
364 |
-
for j, dim in enumerate(['Angry',
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
|
375 |
-
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
|
383 |
-
|
384 |
-
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
|
394 |
|
395 |
-
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
|
403 |
|
404 |
-
|
405 |
|
406 |
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
|
413 |
-
|
414 |
-
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
|
430 |
|
431 |
|
432 |
|
433 |
|
434 |
-
|
435 |
-
|
436 |
|
437 |
|
438 |
|
439 |
-
plt.savefig(f'
|
440 |
-
plt.close()
|
441 |
|
|
|
9 |
# human_770.wav
|
10 |
# mimic3_770.wav
|
11 |
# mimic3_speedup_770.wav
|
12 |
+
FULL_WAV = [
|
13 |
+
'english_z.wav',
|
14 |
+
'english_4x_z.wav',
|
15 |
+
'human_z.wav',
|
16 |
+
'foreign_z.wav',
|
17 |
+
'foreign_4x_z.wav',
|
18 |
+
]
|
19 |
import pandas as pd
|
20 |
import os
|
21 |
|
|
|
87 |
# wavs are generated concat and plot time-series?
|
88 |
|
89 |
# for mimic3/mimic3speed/human - concat all 77 and run timeseries with 7s hop 3s
|
90 |
+
for long_audio in FULL_WAV:
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
|
92 |
if not os.path.exists(file_interface):
|
93 |
|
|
|
242 |
else:
|
243 |
print(file_interface, 'FOUND')
|
244 |
# df_pred = pd.read_pickle(file_interface)
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
# ===============================================================================
|
249 |
# V I S U A L S by loading all 3 pkl - mimic3 - speedup - human pd
|
250 |
#
|
|
|
253 |
|
254 |
preds = {}
|
255 |
SHORTEST_PD = 100000 # segments
|
256 |
+
for long_audio in FULL_WAV:
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
file_interface = f'timeseries_{long_audio.replace("/", "")}.pkl'
|
258 |
y = pd.read_pickle(file_interface)
|
259 |
preds[long_audio] = y
|
|
|
271 |
p.index = p.index.map(mapper = (lambda x: x.total_seconds()))
|
272 |
preds[k] = p
|
273 |
|
274 |
+
# print(p, '\n\n\n\n \n')
|
275 |
+
|
276 |
+
print(preds.keys(),'p')
|
277 |
|
|
|
278 |
|
|
|
279 |
|
280 |
|
281 |
+
# 2 PLOTS
|
282 |
|
283 |
+
for lang in ['english',
|
284 |
+
'foreign']:
|
285 |
+
|
|
|
286 |
|
287 |
+
fig, ax = plt.subplots(nrows=8, ncols=2, figsize=(21, 24),
|
288 |
+
gridspec_kw={'hspace': 0, 'wspace': .04})
|
289 |
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
|
|
|
292 |
|
293 |
+
time_stamp = preds['human_z.wav'].index.to_numpy()
|
294 |
+
for j, dim in enumerate(['arousal',
|
295 |
+
'dominance',
|
296 |
+
'valence']):
|
297 |
+
|
298 |
+
# MIMIC3
|
299 |
+
|
300 |
+
ax[j, 0].plot(time_stamp, preds[f'{lang}_z.wav'][dim],
|
301 |
+
color=(0,104/255,139/255),
|
302 |
+
label='mean_1',
|
303 |
+
linewidth=2)
|
304 |
+
ax[j, 0].fill_between(time_stamp,
|
305 |
+
|
306 |
+
preds[f'{lang}_z.wav'][dim],
|
307 |
+
preds['human_z.wav'][dim],
|
308 |
+
|
309 |
+
color=(.2,.2,.2),
|
310 |
+
alpha=0.244)
|
311 |
+
if j == 0:
|
312 |
+
ax[j, 0].legend([f'StyleTTS2 using {lang}',
|
313 |
+
f'StyleTTS2 uising LibriSpeech'],
|
314 |
+
prop={'size': 10},
|
315 |
+
)
|
316 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
|
317 |
+
|
318 |
+
# TICK
|
319 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
320 |
+
# ax[j, 0].set_yticks([.25, .5,.75])
|
321 |
+
# ax[j, 0].set_yticklabels(['0.25', '.5', '0.75'])
|
322 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
323 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
324 |
|
325 |
|
326 |
+
# MIMIC3 4x speed
|
327 |
|
328 |
|
329 |
+
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_z.wav'][dim],
|
330 |
+
color=(0,104/255,139/255),
|
331 |
+
label='mean_1',
|
332 |
+
linewidth=2)
|
333 |
+
ax[j, 1].fill_between(time_stamp,
|
334 |
|
335 |
+
preds[f'{lang}_4x_z.wav'][dim],
|
336 |
+
preds['human_z.wav'][dim],
|
337 |
|
338 |
+
color=(.2,.2,.2),
|
339 |
+
alpha=0.244)
|
340 |
+
if j == 0:
|
341 |
+
ax[j, 1].legend([f'StyleTTS2 using {lang} 4x speed',
|
342 |
+
f'StyleTTS2 using LibriSpeech'],
|
343 |
+
prop={'size': 10},
|
344 |
+
# loc='lower right'
|
345 |
+
)
|
346 |
|
347 |
|
348 |
+
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)')
|
349 |
|
350 |
|
351 |
|
352 |
+
# TICK
|
353 |
+
ax[j, 1].set_ylim([1e-7, .9999])
|
354 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
355 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
356 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
357 |
|
358 |
|
359 |
|
360 |
|
361 |
+
ax[j, 0].grid()
|
362 |
+
ax[j, 1].grid()
|
363 |
+
# CATEGORIE
|
364 |
|
365 |
|
366 |
|
367 |
|
368 |
|
369 |
+
time_stamp = preds['human_z.wav'].index.to_numpy()
|
370 |
+
for j, dim in enumerate(['Angry',
|
371 |
+
'Sad',
|
372 |
+
'Happy',
|
373 |
+
# 'Surprise',
|
374 |
+
'Fear',
|
375 |
+
'Disgust',
|
376 |
+
# 'Contempt',
|
377 |
+
# 'Neutral'
|
378 |
+
]): # ASaHSuFDCN
|
379 |
+
j = j + 3 # skip A/D/V suplt
|
380 |
|
381 |
+
# MIMIC3
|
382 |
|
383 |
+
ax[j, 0].plot(time_stamp, preds[f'{lang}_z.wav'][dim],
|
384 |
+
color=(0,104/255,139/255),
|
385 |
+
label='mean_1',
|
386 |
+
linewidth=2)
|
387 |
+
ax[j, 0].fill_between(time_stamp,
|
388 |
|
389 |
+
preds[f'{lang}_z.wav'][dim],
|
390 |
+
preds['human_z.wav'][dim],
|
391 |
|
392 |
+
color=(.2,.2,.2),
|
393 |
+
alpha=0.244)
|
394 |
+
# ax[j, 0].legend(['StyleTTS2 style mimic3',
|
395 |
+
# 'StyleTTS2 style crema-d'],
|
396 |
+
# prop={'size': 10},
|
397 |
+
# # loc='upper left'
|
398 |
+
# )
|
399 |
|
400 |
|
401 |
+
ax[j, 0].set_ylabel(dim.lower(), color=(.4, .4, .4), fontsize=14)
|
402 |
|
403 |
+
# TICKS
|
404 |
+
ax[j, 0].set_ylim([1e-7, .9999])
|
405 |
+
ax[j, 0].set_xlim([time_stamp[0], time_stamp[-1]])
|
406 |
+
ax[j, 0].set_xticklabels(['' for _ in ax[j, 0].get_xticklabels()])
|
407 |
+
ax[j, 0].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
|
408 |
|
409 |
|
410 |
+
# MIMIC3 4x speed
|
411 |
|
412 |
|
413 |
+
ax[j, 1].plot(time_stamp, preds[f'{lang}_4x_z.wav'][dim],
|
414 |
+
color=(0,104/255,139/255),
|
415 |
+
label='mean_1',
|
416 |
+
linewidth=2)
|
417 |
+
ax[j, 1].fill_between(time_stamp,
|
418 |
|
419 |
+
preds[f'{lang}_4x_z.wav'][dim],
|
420 |
+
preds['human_z.wav'][dim],
|
421 |
|
422 |
+
color=(.2,.2,.2),
|
423 |
+
alpha=0.244)
|
424 |
+
# ax[j, 1].legend(['StyleTTS2 style mimic3 4x speed',
|
425 |
+
# 'StyleTTS2 style crema-d'],
|
426 |
+
# prop={'size': 10},
|
427 |
+
# # loc='upper left'
|
428 |
+
# )
|
429 |
+
ax[j, 1].set_xlabel('767 Harvard Sentences (seconds)', fontsize=16, color=(.4,.4,.4))
|
430 |
+
ax[j, 1].set_ylim([1e-7, .999])
|
431 |
+
# ax[j, 1].set_yticklabels(['' for _ in ax[j, 1].get_yticklabels()])
|
432 |
+
ax[j, 1].set_xticklabels(['' for _ in ax[j, 1].get_xticklabels()])
|
433 |
+
ax[j, 1].set_xlim([time_stamp[0], time_stamp[-1]])
|
434 |
+
|
435 |
|
436 |
|
437 |
|
438 |
|
439 |
|
440 |
+
ax[j, 0].grid()
|
441 |
+
ax[j, 1].grid()
|
442 |
|
443 |
|
444 |
|
445 |
+
plt.savefig(f'fig_{lang}_z.pdf', bbox_inches='tight')
|
446 |
+
plt.close()
|
447 |
|