# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ All the functions to build the relevant models and modules from the Hydra config. """ import typing as tp import audiocraft import omegaconf import torch from .encodec import CompressionModel, EncodecModel from .lm import LMModel from .seanet import SEANetDecoder from .codebooks_patterns import ( CodebooksPatternProvider, DelayedPatternProvider, MusicLMPattern, ParallelPatternProvider, UnrolledPatternProvider, CoarseFirstPattern, ) from .conditioners import ( BaseConditioner, ConditionFuser, ConditioningProvider, T5Conditioner, ) from .unet import DiffusionUnet import audiocraft.quantization as qt from .utils.utils import dict_from_config from .diffusion_schedule import MultiBandProcessor, SampleProcessor def get_quantizer(quantizer: str, cfg: omegaconf.DictConfig, dimension: int) -> qt.BaseQuantizer: klass = { 'no_quant': qt.DummyQuantizer, 'rvq': qt.ResidualVectorQuantizer }[quantizer] kwargs = dict_from_config(getattr(cfg, quantizer)) if quantizer != 'no_quant': kwargs['dimension'] = dimension return klass(**kwargs) def get_encodec_autoencoder(cfg): kwargs = dict_from_config(getattr(cfg, 'seanet')) _ = kwargs.pop('encoder') decoder_override_kwargs = kwargs.pop('decoder') decoder_kwargs = {**kwargs, **decoder_override_kwargs} decoder = SEANetDecoder(**decoder_kwargs) return decoder def get_compression_model(cfg): """Instantiate a compression model.""" if cfg.compression_model == 'encodec': kwargs = dict_from_config(getattr(cfg, 'encodec')) quantizer_name = kwargs.pop('quantizer') decoder = get_encodec_autoencoder(cfg) quantizer = get_quantizer(quantizer_name, cfg, 128) renormalize = kwargs.pop('renormalize', False) # deprecated params # print(f'{frame_rate=} {encoder.dimension=}') frame_rate=50 encoder.dimension=128 kwargs.pop('renorm', None) # print('\n______!____________\n', kwargs, '\n______!____________\n') # ______!____________ # {'autoencoder': 'seanet', 'sample_rate': 16000, 'channels': 1, 'causal': False} # ______!____________ return EncodecModel(decoder=decoder, quantizer=quantizer, frame_rate=50, renormalize=renormalize, sample_rate=16000, channels=1, causal=False ).to(cfg.device) else: raise KeyError(f"Unexpected compression model {cfg.compression_model}") def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel: """Instantiate a transformer LM.""" if cfg.lm_model in ['transformer_lm', 'transformer_lm_magnet']: kwargs = dict_from_config(getattr(cfg, 'transformer_lm')) n_q = kwargs['n_q'] q_modeling = kwargs.pop('q_modeling', None) codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern') attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout')) cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance')) cfg_prob, cfg_coef = cls_free_guidance['training_dropout'], cls_free_guidance['inference_coef'] fuser = get_condition_fuser(cfg) condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device) if len(fuser.fuse2cond['cross']) > 0: # enforce cross-att programmatically kwargs['cross_attention'] = True if codebooks_pattern_cfg.modeling is None: assert q_modeling is not None, \ "LM model should either have a codebook pattern defined or transformer_lm.q_modeling" codebooks_pattern_cfg = omegaconf.OmegaConf.create( {'modeling': q_modeling, 'delay': {'delays': list(range(n_q))}} ) pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg) # lm_class = MagnetLMModel if cfg.lm_model == 'transformer_lm_magnet' else LMModel lm_class = LMModel # hard coded D print(f'{lm_class=}\n\n\n\n=====================') return lm_class( pattern_provider=pattern_provider, condition_provider=condition_provider, fuser=fuser, cfg_dropout=cfg_prob, cfg_coef=cfg_coef, attribute_dropout=attribute_dropout, dtype=getattr(torch, cfg.dtype), device=cfg.device, **kwargs ).to(cfg.device) else: raise KeyError(f"Unexpected LM model {cfg.lm_model}") def get_conditioner_provider(output_dim: int, cfg: omegaconf.DictConfig) -> ConditioningProvider: """Instantiate a conditioning model.""" device = cfg.device duration = cfg.dataset.segment_duration cfg = getattr(cfg, 'conditioners') dict_cfg = {} if cfg is None else dict_from_config(cfg) conditioners: tp.Dict[str, BaseConditioner] = {} condition_provider_args = dict_cfg.pop('args', {}) condition_provider_args.pop('merge_text_conditions_p', None) condition_provider_args.pop('drop_desc_p', None) for cond, cond_cfg in dict_cfg.items(): model_type = cond_cfg['model'] model_args = cond_cfg[model_type] if model_type == 't5': conditioners[str(cond)] = T5Conditioner(output_dim=output_dim, device=device, **model_args) else: raise ValueError(f"Unrecognized conditioning model: {model_type}") conditioner = ConditioningProvider(conditioners, device=device, **condition_provider_args) return conditioner def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser: """Instantiate a condition fuser object.""" fuser_cfg = getattr(cfg, 'fuser') fuser_methods = ['sum', 'cross', 'prepend', 'input_interpolate'] fuse2cond = {k: fuser_cfg[k] for k in fuser_methods} kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods} fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs) return fuser def get_codebooks_pattern_provider(n_q: int, cfg: omegaconf.DictConfig) -> CodebooksPatternProvider: """Instantiate a codebooks pattern provider object.""" pattern_providers = { 'parallel': ParallelPatternProvider, 'delay': DelayedPatternProvider, 'unroll': UnrolledPatternProvider, 'coarse_first': CoarseFirstPattern, 'musiclm': MusicLMPattern, } name = cfg.modeling kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {} klass = pattern_providers[name] return klass(n_q, **kwargs) def get_debug_compression_model(device='cpu', sample_rate: int = 32000): """Instantiate a debug compression model to be used for unit tests.""" assert sample_rate in [16000, 32000], "unsupported sample rate for debug compression model" model_ratios = { 16000: [10, 8, 8], # 25 Hz at 16kHz 32000: [10, 8, 16] # 25 Hz at 32kHz } ratios: tp.List[int] = model_ratios[sample_rate] frame_rate = 25 seanet_kwargs: dict = { 'n_filters': 4, 'n_residual_layers': 1, 'dimension': 32, 'ratios': ratios, } encoder = SEANetEncoder(**seanet_kwargs) decoder = SEANetDecoder(**seanet_kwargs) quantizer = qt.ResidualVectorQuantizer(dimension=32, bins=400, n_q=4) init_x = torch.randn(8, 32, 128) quantizer(init_x, 1) # initialize kmeans etc. compression_model = EncodecModel( encoder, decoder, quantizer, frame_rate=frame_rate, sample_rate=sample_rate, channels=1).to(device) return compression_model.eval() def get_diffusion_model(cfg: omegaconf.DictConfig): # TODO Find a way to infer the channels from dset channels = cfg.channels num_steps = cfg.schedule.num_steps return DiffusionUnet( chin=channels, num_steps=num_steps, **cfg.diffusion_unet) def get_processor(cfg, sample_rate: int = 24000): sample_processor = SampleProcessor() if cfg.use: kw = dict(cfg) kw.pop('use') kw.pop('name') if cfg.name == "multi_band_processor": sample_processor = MultiBandProcessor(sample_rate=sample_rate, **kw) return sample_processor