# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Utility functions to load from the checkpoints. Each checkpoint is a torch.saved dict with the following keys: - 'xp.cfg': the hydra config as dumped during training. This should be used to rebuild the object using the audiocraft.models.builders functions, - 'model_best_state': a readily loadable best state for the model, including the conditioner. The model obtained from `xp.cfg` should be compatible with this state dict. In the case of a LM, the encodec model would not be bundled along but instead provided separately. Those functions also support loading from a remote location with the Torch Hub API. They also support overriding some parameters, in particular the device and dtype of the returned model. """ from pathlib import Path from huggingface_hub import hf_hub_download import typing as tp import os from omegaconf import OmegaConf, DictConfig import torch import audiocraft from . import builders from .encodec import CompressionModel def get_audiocraft_cache_dir() -> tp.Optional[str]: return os.environ.get('AUDIOCRAFT_CACHE_DIR', None) def _get_state_dict( file_or_url_or_id: tp.Union[Path, str], filename: tp.Optional[str] = None, device='cpu', cache_dir: tp.Optional[str] = None, ): if cache_dir is None: cache_dir = get_audiocraft_cache_dir() # Return the state dict either from a file or url file_or_url_or_id = str(file_or_url_or_id) assert isinstance(file_or_url_or_id, str) if os.path.isfile(file_or_url_or_id): return torch.load(file_or_url_or_id, map_location=device) if os.path.isdir(file_or_url_or_id): file = f"{file_or_url_or_id}/{filename}" return torch.load(file, map_location=device) elif file_or_url_or_id.startswith('https://'): return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True) else: assert filename is not None, "filename needs to be defined if using HF checkpoints" file = hf_hub_download( repo_id=file_or_url_or_id, filename=filename, cache_dir=cache_dir, library_name="audiocraft", library_version= '1.3.0a1') # Found at __init__.py #audiocraft.__version__) return torch.load(file, map_location=device) def load_compression_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None): return _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir) def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): pkg = load_compression_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) if 'pretrained' in pkg: return CompressionModel.get_pretrained(pkg['pretrained'], device=device) cfg = OmegaConf.create(pkg['xp.cfg']) cfg.device = str(device) model = builders.get_compression_model(cfg) model.load_state_dict(pkg['best_state']) model.eval() return model def load_lm_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None): return _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir) def _delete_param(cfg: DictConfig, full_name: str): parts = full_name.split('.') for part in parts[:-1]: if part in cfg: cfg = cfg[part] else: return OmegaConf.set_struct(cfg, False) if parts[-1] in cfg: del cfg[parts[-1]] OmegaConf.set_struct(cfg, True) def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) cfg = OmegaConf.create(pkg['xp.cfg']) cfg.device = str(device) if cfg.device == 'cpu': cfg.dtype = 'float32' else: cfg.dtype = 'float16' _delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path') _delete_param(cfg, 'conditioners.args.merge_text_conditions_p') _delete_param(cfg, 'conditioners.args.drop_desc_p') model = builders.get_lm_model(cfg) model.load_state_dict(pkg['best_state']) model.eval() model.cfg = cfg return model def load_lm_model_magnet(file_or_url_or_id: tp.Union[Path, str], compression_model_frame_rate: int, device='cpu', cache_dir: tp.Optional[str] = None): pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) cfg = OmegaConf.create(pkg['xp.cfg']) cfg.device = str(device) if cfg.device == 'cpu': cfg.dtype = 'float32' else: cfg.dtype = 'float16' _delete_param(cfg, 'conditioners.args.merge_text_conditions_p') _delete_param(cfg, 'conditioners.args.drop_desc_p') cfg.transformer_lm.compression_model_framerate = compression_model_frame_rate cfg.transformer_lm.segment_duration = cfg.dataset.segment_duration cfg.transformer_lm.span_len = cfg.masking.span_len # MAGNeT models v1 support only xformers backend. from .transformer import set_efficient_attention_backend if cfg.transformer_lm.memory_efficient: set_efficient_attention_backend("xformers") model = builders.get_lm_model(cfg) model.load_state_dict(pkg['best_state']) model.eval() model.cfg = cfg return model def load_mbd_ckpt(file_or_url_or_id: tp.Union[Path, str], filename: tp.Optional[str] = None, cache_dir: tp.Optional[str] = None): return _get_state_dict(file_or_url_or_id, filename=filename, cache_dir=cache_dir) def load_diffusion_models(file_or_url_or_id: tp.Union[Path, str], device='cpu', filename: tp.Optional[str] = None, cache_dir: tp.Optional[str] = None): pkg = load_mbd_ckpt(file_or_url_or_id, filename=filename, cache_dir=cache_dir) models = [] processors = [] cfgs = [] sample_rate = pkg['sample_rate'] for i in range(pkg['n_bands']): cfg = pkg[i]['cfg'] model = builders.get_diffusion_model(cfg) model_dict = pkg[i]['model_state'] model.load_state_dict(model_dict) model.to(device) processor = builders.get_processor(cfg=cfg.processor, sample_rate=sample_rate) processor_dict = pkg[i]['processor_state'] processor.load_state_dict(processor_dict) processor.to(device) models.append(model) processors.append(processor) cfgs.append(cfg) return models, processors, cfgs