File size: 16,481 Bytes
4cfcb8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
        "__module__": "stable_baselines3.dqn.policies",
        "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
        "__doc__": "\n    Policy class with Q-Value Net and target net for DQN\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function DQNPolicy.__init__ at 0x7fe2bd786560>",
        "_build": "<function DQNPolicy._build at 0x7fe2bd7865f0>",
        "make_q_net": "<function DQNPolicy.make_q_net at 0x7fe2bd786680>",
        "forward": "<function DQNPolicy.forward at 0x7fe2bd786710>",
        "_predict": "<function DQNPolicy._predict at 0x7fe2bd7867a0>",
        "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fe2bd786830>",
        "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fe2bd7868c0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fe2bd78bec0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "net_arch": [
            256,
            256
        ]
    },
    "num_timesteps": 100000,
    "_total_timesteps": 100000,
    "_num_timesteps_at_start": 0,
    "seed": 0,
    "action_noise": null,
    "start_time": 1723040556991871906,
    "learning_rate": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9EpNKyv9tNhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "tensorboard_log": null,
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAGteUD8CuRQ/NSAyPwreN7874FW/ylOTP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
    },
    "_episode_num": 1004,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFGAAAAAAACMAWyUS0eMAXSUR0BzQ25TZQHidX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzSAXP7el9dX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzTQW56MR6dX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BzUnPVurIYdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzWD5IpYs/dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzXdz4k/r0dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BzY08wHqu9dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BzaU/fO2RadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0Bzb9oBaLXMdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BzdVJQLux9dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0Bzeo4iosI3dX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BzgRD6WPcSdX2UKGgGR8BkgAAAAAAAaAdLpWgIR0BziS6z3RG+dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BzjVDMNc4YdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzkNhPTG5udX2UKGgGR8BbAAAAAAAAaAdLbWgIR0BzljrzGxUvdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BzmnhUBGQTdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BznvEWIoE0dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BzozXL/0dzdX2UKGgGR8Bg4AAAAAAAaAdLiGgIR0BzqiUB4lhPdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BzrZ5t3wCsdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BzsW2oegctdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BztTzUZvUCdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bzunw/gR9PdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BzviKIi1RcdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BzwqGIsRQKdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0Bzxlo0ygwodX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BzynxNIsiCdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BzzyRjjJdTdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Bz03R4QjD9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz17MW43FUdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0Bz3MuAZsKtdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0Bz4BeBxxT9dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bz5FbQkX1rdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0Bz6Yz7/GVBdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0Bz7kydnTRZdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0Bz8ug/TspodX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Bz9w+cH4XXdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0Bz+zCgsbvPdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bz/wM+eOGTdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0B0AoFwDNhWdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0B0Wi1y/9dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0C17eEZivdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0D+qdYnv2dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0FFKpT/ACdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0F5EfDDTCdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0B0G5k8RtgsdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B0H6xY7q6fdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0JNrbg0j1dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B0KoBDG96DdX2UKGgGR8BeQAAAAAAAaAdLemgIR0B0MfcQAdXDdX2UKGgGR8BQwAAAAAAAaAdLRGgIR0B0NvX9R77bdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0PByKekHldX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0QUURFqi5dX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0SCjFhodudX2UKGgGR8BYwAAAAAAAaAdLZGgIR0B0TtFnZkCndX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0VTxiG34LdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0B0WT8fms/6dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0XPrSmZVodX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0YM+u/1xsdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0B0ZgCdSVGDdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B0aqc/dIoWdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0bxpeu3c6dX2UKGgGR8BpgAAAAAAAaAdLzWgIR0B0eUjfNzKcdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0fW619fCzdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0B0gYqvvBrOdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0B0hUGnn+yadX2UKGgGR8BWQAAAAAAAaAdLWmgIR0B0iicDr7fpdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0B0jyu/1xsEdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0B0kr2xptaZdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B0lwCDEm6YdX2UKGgGR8BaAAAAAAAAaAdLaWgIR0B0nGukk8ifdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B0oDvXsgMddX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B0pH9KmKqGdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0B0qGpkwvg4dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0q6d9Ujs2dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0B0rta9sabXdX2UKGgGR8BbQAAAAAAAaAdLbmgIR0B0tAulGgBcdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0B0uAfvF3pwdX2UKGgGR8BbgAAAAAAAaAdLb2gIR0B0vc86mwaBdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0B0wVw97ngYdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B0xm67NB4VdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B0y24x1xKhdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0B0z3Fm4AjqdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0B009BY3eendX2UKGgGR8BZAAAAAAAAaAdLZWgIR0B02OOAAhjfdX2UKGgGR8BdgAAAAAAAaAdLd2gIR0B03wmICU5ddX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B044srd30PdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0B059/WlMyrdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0B07R1KXfIkdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0B08bmSyMUAdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B09nsdDIBBdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0B0/P8P4EfUdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1A7+kxh2GdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0B1COj+JgstdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0B1D6OCGvfTdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0B1FPQa72+PdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0B1GonBtUGWdX2UKGgGR8BagAAAAAAAaAdLa2gIR0B1Ib7UG3WndX2UKGgGR8BVAAAAAAAAaAdLVWgIR0B1J8dKdxyXdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 100000,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVNAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgYAAAAAAAAAAQEBAQEBlGgVSwaFlGgZdJRSlIwGX3NoYXBllEsGhZSMA2xvd5RoESiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaAtLBoWUaBl0lFKUjARoaWdolGgRKJYYAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZRoC0sGhZRoGXSUUpSMCGxvd19yZXBylIxDWyAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgLTEyLjU2NjM3MSAtMjguMjc0MzM0XZSMCWhpZ2hfcmVwcpSMPVsgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgMTIuNTY2MzcxIDI4LjI3NDMzNF2UjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True  True  True]",
        "bounded_above": "[ True  True  True  True  True  True]",
        "_shape": [
            6
        ],
        "low": "[ -1.        -1.        -1.        -1.       -12.566371 -28.274334]",
        "high": "[ 1.        1.        1.        1.       12.566371 28.274334]",
        "low_repr": "[ -1.        -1.        -1.        -1.       -12.566371 -28.274334]",
        "high_repr": "[ 1.        1.        1.        1.       12.566371 28.274334]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
        "n": "3",
        "start": "0",
        "_shape": [],
        "dtype": "int64",
        "_np_random": "Generator(PCG64)"
    },
    "n_envs": 1,
    "buffer_size": 1,
    "batch_size": 128,
    "learning_starts": 0,
    "tau": 1.0,
    "gamma": 0.99,
    "gradient_steps": -1,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
        "__module__": "stable_baselines3.common.buffers",
        "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
        "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ",
        "__init__": "<function ReplayBuffer.__init__ at 0x7fe2bd8cbc70>",
        "add": "<function ReplayBuffer.add at 0x7fe2bd8cbd00>",
        "sample": "<function ReplayBuffer.sample at 0x7fe2bd8cbd90>",
        "_get_samples": "<function ReplayBuffer._get_samples at 0x7fe2bd8cbe20>",
        "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fe2bd8cbeb0>)>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fe2bdaa0440>"
    },
    "replay_buffer_kwargs": {},
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "exploration_initial_eps": 1.0,
    "exploration_final_eps": 0.1,
    "exploration_fraction": 0.12,
    "target_update_interval": 250,
    "_n_calls": 100000,
    "max_grad_norm": 10,
    "exploration_rate": 0.1,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVewQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoRH2UfZQoaBhoN2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaExdlGhOfZR1hpSGUjAu"
    },
    "batch_norm_stats": [],
    "batch_norm_stats_target": [],
    "exploration_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoN0c/vrhR64UeuIWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    }
}