{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92989cc3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92989cc430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92989cc4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92989cc550>", "_build": "<function ActorCriticPolicy._build at 0x7f92989cc5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f92989cc670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92989cc700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92989cc790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92989cc820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92989cc8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92989cc940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92989cc9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f929896e300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723277106264360474, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqU/7yLwrM/i/8Av2se671Gytw8LjHWOwAAAAAAAAAAVgexPr44KT+whVw+/SYNv7yLSD4udqY9AAAAAAAAAAAacrE9I2bRP7ERPD7upQ4+12kRPn1ntz0AAAAAAAAAAGZ+N7xIJdI/jnjuvTxJLL4vPT4+BldAPgAAAAAAAAAAMwPjvHj22j7jeVO8OhVXv1oqrr0wqCy+AAAAAAAAAACAGDa9wwIPP9/vOL5azVW/dCibPcbhOb4AAAAAAAAAADOCu7wynK8/WUIWvx+q5L5CAec8wvgvPgAAAAAAAAAAinLMPn1VDzyuv4E9mi+WvzwqCz4eNQ++AAAAAAAAAACmsv29oq+WP2WXor7MNAG/GPhSPea6RzwAAAAAAAAAAJq5sjoE27M/dmkNPmn0g75oNM66qyAAvQAAAAAAAAAAM00rPYSLvD8axOw+pAK9PvKGLb1yR7u9AAAAAAAAAADNR5M8GqqpP0FWmD0g4Li+BM3avK0hVb0AAAAAAAAAAMgRkb7Yink/tuIgv0+dBb8KlBG+MRcxvAAAAAAAAAAAGsaTPjC6JT+2k1I+v/V/v2oy/z5hRCe+AAAAAAAAAAAAwKC69P2kPygLfj0pImK+XsEJvoqGqr0AAAAAAAAAAFNjX76DcL0+3Dq4PQnjhr+nL8++HlA5PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEUTxJd0JWyMAWyUS3GMAXSUR0BbnF4cFQl9dX2UKGgGR8BGezFl05lwaAdLU2gIR0BbnaQmu1WsdX2UKGgGR8A+fGgSOBDpaAdLgWgIR0Bbn1/+bVjJdX2UKGgGR8BVcB6nivPkaAdLe2gIR0BboOWv8qFzdX2UKGgGR8ArfwT/Q0GeaAdLaGgIR0BbpP8l5WzXdX2UKGgGR8BTJVpsXSBtaAdLUmgIR0Bbq3WnTAnEdX2UKGgGR8BLdV0Lc9GJaAdLZGgIR0BbrR46fapQdX2UKGgGR8BSWzNpudf+aAdLmmgIR0BbsxEF4cFRdX2UKGgGR8BEdDp9qk/KaAdLWWgIR0BbtKkqMFUydX2UKGgGR8BK3nFo+OfeaAdLRGgIR0BbtKhxo7FLdX2UKGgGR8Bncp1DBuXNaAdLmGgIR0BbuHZXdTHbdX2UKGgGR8Bg6YQ176YWaAdLemgIR0BbvFaKUFB6dX2UKGgGR8Bc2h4D9wWFaAdLWmgIR0Bbwk2DQJHBdX2UKGgGR8BEgL0z0pVkaAdLdWgIR0BbxCVrylN2dX2UKGgGR8Bb23KSxJNCaAdLgWgIR0BbxdmDlHSXdX2UKGgGR8BXfDjNpudgaAdLWGgIR0BbyH+qBErodX2UKGgGR8BRxWhZha1UaAdLdGgIR0Bby7KJVKf4dX2UKGgGR8BY096PbO/taAdLs2gIR0BbziHymQ8wdX2UKGgGR8A6aji4rjHXaAdLi2gIR0Bb0dTcZccEdX2UKGgGR8A+MBwdbPhRaAdLY2gIR0Bb0jBEa2nbdX2UKGgGR8BJMyBClabGaAdLmWgIR0Bb1M9B8hLXdX2UKGgGR8BSPHLvCuU2aAdLj2gIR0Bb1fzz3AVPdX2UKGgGR8AxsIXTEzfraAdLY2gIR0Bb3cTSLIgedX2UKGgGR8BYnCt/4IrwaAdLdmgIR0Bb3jk+5e7ddX2UKGgGR8Bd4Rkd3jdYaAdLUWgIR0Bb30gjhUBGdX2UKGgGR8BW3oeHSF4+aAdLkGgIR0Bb3/lEJBw/dX2UKGgGR8BTDRPTG5tnaAdLc2gIR0Bb4APVd5Y6dX2UKGgGR8BWh/1pTMq0aAdLXWgIR0Bb4FKK508vdX2UKGgGR8BAdtqpLmITaAdLhGgIR0Bb4gBkqc3EdX2UKGgGR8BSiJNKyv9taAdLZWgIR0Bb43ktEofCdX2UKGgGR8BIk1Gsmv4eaAdLj2gIR0Bb48Xm/336dX2UKGgGR8BgUJ/3FkxzaAdLXmgIR0Bb5AcHWz4UdX2UKGgGR8A9+onKGL1maAdLQ2gIR0Bb6AdKdxyXdX2UKGgGR8BNex7AtWdVaAdLTWgIR0Bb6VzySV4YdX2UKGgGR8BXlAjIJZ4faAdLW2gIR0Bb6gdS2phndX2UKGgGR8BPL3g9/z8QaAdLR2gIR0Bb78iB5HEudX2UKGgGR8BQWDnRsuWbaAdLQ2gIR0Bb8QeV9nbqdX2UKGgGR8BItZU96kZaaAdLRGgIR0Bb9P8/D+BIdX2UKGgGR8Ay0fjCHh0haAdLXWgIR0Bb9iE6DGtIdX2UKGgGR8BV+DXWe6I4aAdLmWgIR0Bb9oKx9oexdX2UKGgGR8BCN0SZjQRgaAdLYmgIR0Bb+HFLnLaFdX2UKGgGR8BauezlcQiBaAdLYGgIR0Bb+KK+BYmtdX2UKGgGR8BTcY6S1Vo6aAdLl2gIR0Bb+gXyiEg4dX2UKGgGR8BS/GT1TR6XaAdLrmgIR0Bb+o1UEPlNdX2UKGgGR8BVHKWLP2PDaAdLW2gIR0Bb/48dPtUodX2UKGgGR8BL7G9YfW+XaAdLfmgIR0BcAFajesPrdX2UKGgGR8BVqlZPl+3IaAdLXWgIR0BcAYHC4z7/dX2UKGgGR8BdKjc2zfJnaAdLX2gIR0BcArv5P/JedX2UKGgGR8BNdxnFo+OfaAdLd2gIR0BcArMs6JZXdX2UKGgGR8BRWGuLaVUuaAdLhGgIR0BcBWpda+vhdX2UKGgGR8BKZp1aGHpKaAdLRWgIR0BcBv47A+INdX2UKGgGR8BF9Qc5sCT2aAdLXGgIR0BcB+armyPddX2UKGgGR8A/2AAQxvehaAdLmmgIR0BcCW+49X9zdX2UKGgGR8BIcCSRr8BNaAdLZmgIR0BcC3N1QqI8dX2UKGgGR8AxfWGATZg5aAdLT2gIR0BcDJULlV94dX2UKGgGR8BPW8NYr8R+aAdLWmgIR0BcDYUJv5xjdX2UKGgGR8BEutfXwsoVaAdLWWgIR0BcEN3B55Z9dX2UKGgGR8BUEh1PnB+GaAdLXGgIR0BcESxiXpnpdX2UKGgGR8BOcrC3w1BMaAdLbWgIR0BcFAa72+PBdX2UKGgGR8BXlKvq1PWQaAdLe2gIR0BcFVcQiA2AdX2UKGgGR8Aq3OpKjBVNaAdLUWgIR0BcFsAFPi1idX2UKGgGR8BVlQvxpcoqaAdLcGgIR0BcHG4EwFkhdX2UKGgGR8BLoSeyzHCGaAdLYGgIR0BcH9pyp71JdX2UKGgGR8BZyoxcmjTKaAdLXWgIR0BcJAmmce8xdX2UKGgGR8BV2llf7aZhaAdLi2gIR0BcJy+6Ae7udX2UKGgGR8BB1mzKLbYcaAdLgWgIR0BcJ41k1/DtdX2UKGgGR8BV/0BXCCSSaAdLmmgIR0BcKRvBJqZddX2UKGgGR8BNdkZrHlwMaAdLaWgIR0BcKiRr8BMjdX2UKGgGR0A3c4UeuFHsaAdLnGgIR0BcKwz1schldX2UKGgGR8BRcYwdsBQvaAdLXWgIR0BcKwm3OObRdX2UKGgGR8BS3di2DxsmaAdLfmgIR0BcK3DFZPl/dX2UKGgGR8BApw2l2vB8aAdLUmgIR0BcK1JcxCY1dX2UKGgGR8BIqsN2C/XYaAdLhmgIR0BcMK1og3cYdX2UKGgGR8BV77C3w1BMaAdLX2gIR0BcMV7hNucddX2UKGgGR8BEs/wiJO32aAdLbWgIR0BcM17hNucddX2UKGgGR8BURzZHuqm1aAdLqGgIR0BcNIbjtG/fdX2UKGgGR8BOJ21MM7U5aAdLQ2gIR0BcNiVv/BFedX2UKGgGR8AEdkOI68xsaAdLZmgIR0BcN+oYNy5qdX2UKGgGR8BIibUwztTlaAdLlWgIR0BcOPKp1ie/dX2UKGgGR8BNzAL7XQMQaAdLQ2gIR0BcOliz9jwydX2UKGgGR8BtPd9Dx9XtaAdLc2gIR0BcPkbxVhkRdX2UKGgGR8BTY2XTmW+oaAdLTmgIR0BcPrDAJswddX2UKGgGR8BU4u58Sf16aAdLU2gIR0BcQBOgxrSFdX2UKGgGR8BCiMSCe2/jaAdLU2gIR0BcQGA08/2TdX2UKGgGR8BMRyvC/GlzaAdLcGgIR0BcRBrSE12rdX2UKGgGR8BUlrs4T9KmaAdLTGgIR0BcRFFtsN2DdX2UKGgGR8BMVb4BV+7UaAdLcGgIR0BcRmgrYoRadX2UKGgGR8BWFbsfJV81aAdLWGgIR0BcSWgWac7RdX2UKGgGR8BUqQNwzch1aAdLTWgIR0BcSXsXzlLfdX2UKGgGR8BgmeLR8c+8aAdLh2gIR0BcSi75Ec81dX2UKGgGR8BTNN7fHggpaAdLX2gIR0BcTEa/ATIvdX2UKGgGR8BRRN56dDpkaAdLg2gIR0BcUZxWDHwPdX2UKGgGR8BSNQRTS9dvaAdLaGgIR0BcUjwMH8jzdX2UKGgGR8BZhzrZ8KG+aAdLaGgIR0BcVMByS3b3dX2UKGgGR8BSybjT8YQ8aAdLcGgIR0BcVX+uNgjRdX2UKGgGR8BUrcpG4I8haAdLp2gIR0BcVbkjopx4dX2UKGgGR8BpwYm1IAfdaAdLcGgIR0BcW7OiWVu8dX2UKGgGR8BG1VG9YfW+aAdLVWgIR0BcXR7JGOMmdX2UKGgGR8BOlavzOHFhaAdLb2gIR0BcXY4hllK9dX2UKGgGR8BL8qvV3EAHaAdLQmgIR0BcXkYoAn2JdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |