Upload DQN LunarLander-v2 trained agent
Browse files- LunarLander-v2.zip +3 -0
- LunarLander-v2/_stable_baselines3_version +1 -0
- LunarLander-v2/data +121 -0
- LunarLander-v2/policy.optimizer.pth +3 -0
- LunarLander-v2/policy.pth +3 -0
- LunarLander-v2/pytorch_variables.pth +3 -0
- LunarLander-v2/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc31e2647101c2ad6ab7a8d85a9dc5eacc50ff1d3f4776fdc029c43917247372
|
3 |
+
size 107901
|
LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
LunarLander-v2/data
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7811ed4309d0>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7811ed430a60>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7811ed430af0>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7811ed430b80>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7811ed430c10>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7811ed430ca0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7811ed430d30>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7811ed429440>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {},
|
20 |
+
"num_timesteps": 100032,
|
21 |
+
"_total_timesteps": 100000,
|
22 |
+
"_num_timesteps_at_start": 0,
|
23 |
+
"seed": null,
|
24 |
+
"action_noise": null,
|
25 |
+
"start_time": 1723227855327713489,
|
26 |
+
"learning_rate": 0.0001,
|
27 |
+
"tensorboard_log": null,
|
28 |
+
"_last_obs": {
|
29 |
+
":type:": "<class 'numpy.ndarray'>",
|
30 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0g6z0egIE/24VoPplBeL/vlDE/Xr/kPgAAAAAAAAAAcD+Ovm6S5z42Lh8/veKCv3XLUL9uyKA+AAAAAAAAAAAAj3u9jhBsP/LSFr6B2wS/eBkJvl6ERLwAAAAAAAAAAJokKL1wV9Y+NvU9veNB0L4xRNA99tLAPQAAAAAAAAAAs1BtvTQIgD0OUDy+TQehvtLI57h67Fi9AAAAAAAAAAAA4oQ8m45ZPw58ob10qFK/Y1+qPqJbez4AAAAAAAAAAKCvGL4p5yg77uMgvrxgyzvMqsK8rvK0vAAAAAAAAAAAM2upvAx8rj88A4m+2gbEvgAKPLxyLw2+AAAAAAAAAAAmrso99BavP7ubWz4lgQy/ZisZP8r64D4AAAAAAAAAAOZOfb3hOpA9vTOEP01wgL8XQoy+IgAmPwAAAAAAAAAA02c8vt5ZBj/6OJE+ugBfv/lfV78L/4C9AAAAAAAAAABAaqI+bPqtPm2yuT6p+dW/iBrSPza56z4AAAAAAAAAAM0h/jyfyL0/Jt4CPtSNrb3PkGM+zvOePgAAAAAAAAAAOuAXPgonOj+NvJs+94Ocv88FFD+m/K4+AAAAAAAAAAAAvL69jCeFPnCQfb5JI5O+9FEYvpc7t70AAAAAAAAAAAAwgro1WbU/sBHOvZl0hT4rvpc6+bW6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
31 |
+
},
|
32 |
+
"_last_episode_starts": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_original_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMd5j0XRIQ/yntoPs5rcb/z3Cs/Y8HkPgAAAAAAAAAAmnyRvgBx8z6j3BU/0heDv3jQVL9FK6Q+AAAAAAAAAABNgHW9vg1vPxnMC741q/y+QHwIvusbZb0AAAAAAAAAABpwJr0RBts+YkgMvYsGwr4KoMY9LTo4PQAAAAAAAAAAM6xlvViGjj3V/0O+FziTvsVLJjv7mLu8AAAAAAAAAACaYIo8FkhePx9ig7092lm/shakPgh/bz4AAAAAAAAAANMQF74puh87tvghvosuzTusnrm8WTe2vAAAAAAAAAAAAO2SvEuWrz/q64y+THa2vsMzlrtO3tu9AAAAAAAAAACa6MU9jqWwPzqTWz5IqwW/h4sTP7P84D4AAAAAAAAAAFpzlL0ewr49rGCFPxuper+025y+baIbPwAAAAAAAAAAxkk/vgdcCz/u44I+zl1ev5SRVr8LMGG9AAAAAAAAAACjkKA+pA7BPq+puT7lj9K/NyjPP2q76z4AAAAAAAAAAM1n8jx3Bb4/GugCPiLGbb3+q1M+nfqePgAAAAAAAAAAmpwUPu8oQT8Hups+eRmZv+WlDz+N/a4+AAAAAAAAAABAkrm9wXWIPn8PjL5bvqK+Qr0TvlLC0b0AAAAAAAAAAAbTP77ddhO9iAWQvgVl4L1TXWE+Fo65PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_episode_num": 1100,
|
41 |
+
"use_sde": false,
|
42 |
+
"sde_sample_freq": -1,
|
43 |
+
"_current_progress_remaining": -0.000320000000000098,
|
44 |
+
"_stats_window_size": 100,
|
45 |
+
"ep_info_buffer": {
|
46 |
+
":type:": "<class 'collections.deque'>",
|
47 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwENhe40/GESMAWyUS2GMAXSUR0CHyTwXIlt1dX2UKGgGR8Biq00pEx7BaAdLPWgIR0CHyVVTaTOgdX2UKGgGR8BfypbILgGbaAdLN2gIR0CHyWNIbwSbdX2UKGgGR8BfJo4hllK9aAdLN2gIR0CHyYXY150KdX2UKGgGR8Bir4llbu+iaAdLSmgIR0CHyYHqNZNgdX2UKGgGR8BWMfwI+nqFaAdLY2gIR0CHyZR0EHMVdX2UKGgGR8Be1D5CWu5jaAdLOGgIR0CHybZRKpT/dX2UKGgGR8B0bv1vl2eQaAdLVWgIR0CHyeV0tAcDdX2UKGgGR8B6IB1r6+FlaAdLfmgIR0CHylWYF7ladX2UKGgGR8AvZCm/FirlaAdLTGgIR0CHyn7Z39rHdX2UKGgGR8BS3nDaXa8IaAdLUGgIR0CHyo/8l5WzdX2UKGgGR8BTawC0WuYAaAdLW2gIR0CHypf7aZhKdX2UKGgGR8BrJJsQ/X5GaAdLWmgIR0CHyy9h7VridX2UKGgGR8BHHPPTodMkaAdLXWgIR0CHy2cQyylfdX2UKGgGR8BikQp+c6NmaAdLOmgIR0CHy4fNiYsvdX2UKGgGR8A8P2cJ+lTFaAdLSGgIR0CHy7VEuxr0dX2UKGgGR8BjWaOLiuMdaAdLQWgIR0CHzEl5WzWxdX2UKGgGR8BAwJpWV/tqaAdLTmgIR0CHzJ9mYjSodX2UKGgGR8BG8fe+Eh7maAdLVWgIR0CHzK3ZPEbYdX2UKGgGR0A21KYzBRAKaAdLUGgIR0CHzSjdpItldX2UKGgGR0A2bY8Md92HaAdLWmgIR0CHzVxx1gYxdX2UKGgGR8BNJD0cwQDnaAdLWWgIR0CHzV0bLlmwdX2UKGgGR8Aw7dM0xdpqaAdLY2gIR0CHzkF1SwW4dX2UKGgGR8BZayVSn+AFaAdLV2gIR0CHzn7KJVKgdX2UKGgGR8BFI4+0PYnOaAdLXmgIR0CHzqHEdeY2dX2UKGgGR8BIdF3pwCKaaAdLXmgIR0CHztuXNTtLdX2UKGgGR8BO4cxTKkmAaAdLO2gIR0CHzvAnDziCdX2UKGgGR8BJOYZdfLLZaAdLU2gIR0CHz00/nnuBdX2UKGgGR8BrVmhRIjGDaAdLWmgIR0CHz34Y77sOdX2UKGgGR8A3CENOM2m6aAdLUWgIR0CHz4rK/20zdX2UKGgGR8BUd6rilzltaAdLd2gIR0CH0CCLdepodX2UKGgGR8BSfgQQL/jsaAdLW2gIR0CH0M1/lQuVdX2UKGgGR8BaSHZbpu/DaAdLe2gIR0CH0V7uUliSdX2UKGgGR0AbyZqmCROlaAdLYmgIR0CH0eK1G9YfdX2UKGgGR8BpCsVnEl3RaAdLYGgIR0CH0gLtu1nedX2UKGgGR0BCh9WyTpxFaAdLe2gIR0CH0o5yU9pzdX2UKGgGR8Bm7FfVqesgaAdLWGgIR0CH0vFwT/Q0dX2UKGgGR8Bpqxbt7a7FaAdLSGgIR0CH0xIzWPLgdX2UKGgGR8BCY1xKg7HRaAdLV2gIR0CH0z2gWac7dX2UKGgGR0BDRzvRZ2ZBaAdLZGgIR0CH03rylN1ydX2UKGgGR8BJ0nyEtdzGaAdLX2gIR0CH05WGyon8dX2UKGgGR8BVSwFHJ9y+aAdLQ2gIR0CH05ffGdZrdX2UKGgGR8BetcTewcHXaAdLbGgIR0CH06bXHzYmdX2UKGgGR0AT/sC1Z1V6aAdLgmgIR0CH08B5ooNNdX2UKGgGR0Bs1fAfuCwsaAdL92gIR0CH08SmIj4YdX2UKGgGR8BVwr2tdRixaAdLZ2gIR0CH1H850bLmdX2UKGgGR8By/umVJL/TaAdLbGgIR0CH1MkzoEB9dX2UKGgGR8BpTKMglnh9aAdLSmgIR0CH1QQ04zacdX2UKGgGR8BbSTfBN21VaAdLbmgIR0CH1h9YwIt2dX2UKGgGR8BJo5ckdFOPaAdLX2gIR0CH1lIQvpQldX2UKGgGR8Bdkgv6CUX6aAdLPWgIR0CH1nDkU9IPdX2UKGgGR8BCismF8G9paAdLWmgIR0CH1r3pwCKadX2UKGgGR8BwiT2AXl8xaAdLUmgIR0CH12xFAmiQdX2UKGgGR0A+QTtb9qDcaAdLeGgIR0CH15o1UEPldX2UKGgGR8BZOKmbb1yvaAdLaGgIR0CH18bF0gbIdX2UKGgGR8AoJGFzuF6BaAdLZWgIR0CH1+mUnogWdX2UKGgGR8BwRyTY/Vy4aAdLUmgIR0CH2DRzBAObdX2UKGgGR8BBtMSkCV8kaAdLS2gIR0CH2EP5HmRvdX2UKGgGR8BfCGYWtU4raAdLSGgIR0CH2GqFyq+8dX2UKGgGR8BPDVtoBaLXaAdLd2gIR0CH2RwOOKfndX2UKGgGR8BWktQsPJ7taAdLgWgIR0CH2TYfW+XadX2UKGgGR0AqeD0UXYUWaAdLfGgIR0CH2VhYNiH7dX2UKGgGR0BBUfTspoboaAdLfGgIR0CH2XOUMXrMdX2UKGgGR8BRnCvgWJrMaAdLfmgIR0CH2XnSv1UVdX2UKGgGR8A8ZuQp4KQaaAdLUmgIR0CH2fvl2eQNdX2UKGgGR8BsmqIrOJLvaAdLVGgIR0CH2mPvrnkldX2UKGgGR8Bq0QCyQgcMaAdLSmgIR0CH2oNjslcAdX2UKGgGR8BQMKNZNfw7aAdLZmgIR0CH2qukDZDidX2UKGgGR8BZr1d9lVcVaAdLTGgIR0CH2tyZrpJPdX2UKGgGR8BwAuxqwhW6aAdLS2gIR0CH2yF7D2rXdX2UKGgGR8BmKpHEuQIVaAdLPmgIR0CH2zk3CKrJdX2UKGgGR0BGll0YCQtBaAdLf2gIR0CH24CyyD7JdX2UKGgGR8BSp7wF1SwXaAdLWWgIR0CH3Dmgam4zdX2UKGgGR8Beo4gq3EydaAdLN2gIR0CH3EP4mCyydX2UKGgGR8A8I2tdRiw0aAdLcmgIR0CH3GyHmA9WdX2UKGgGR8BrARYkmhM8aAdLVGgIR0CH3LGBnSOSdX2UKGgGR8BYUfATIvJzaAdLgWgIR0CH3MejEehgdX2UKGgGR0BKII0qH447aAdLgmgIR0CH3PI7Njb0dX2UKGgGR8BqZCNEPUayaAdLRmgIR0CH3TBRhttRdX2UKGgGR8BwBW+49X9zaAdLT2gIR0CH3U8HObAldX2UKGgGR0BAA+TeO4oaaAdLnWgIR0CH3XaYeDFqdX2UKGgGR0A+0dupCKJmaAdLiGgIR0CH3eMQ2/BWdX2UKGgGR8Bh+ASeyzHCaAdLOmgIR0CH3iMlTm4idX2UKGgGR8BtFxFw1ivxaAdLWGgIR0CH3i7L+xW1dX2UKGgGR8BDiNYB/7SBaAdLUmgIR0CH3lZrYXfqdX2UKGgGR0A+NH6Mzdk8aAdLnmgIR0CH3q83++/QdX2UKGgGR8Boft1wHZ9NaAdLO2gIR0CH3tvE0iyIdX2UKGgGR0AyKd9lVcUuaAdLg2gIR0CH3uAksz2wdX2UKGgGR8BYu+fI0ZWJaAdLQ2gIR0CH3u82aUiZdX2UKGgGR8By06E4//vOaAdLU2gIR0CH3yIC2c8UdX2UKGgGR8BSp/CuU2UCaAdLY2gIR0CH33LIPsiTdX2UKGgGR8BgjUenyd4FaAdLSmgIR0CH38n0Cih4dX2UKGgGR8ApTJPIn0CjaAdLZGgIR0CH4GvTw2ETdX2UKGgGR8BqR/9R77bdaAdLUGgIR0CH4HGx2SuAdX2UKGgGR0A6rmbsniNsaAdLoGgIR0CH4Gu3c580dX2UKGgGR8Bjm8T+NtIkaAdLNGgIR0CH4IkdFOO9dX2UKGgGR8BQInAZbY9QaAdLS2gIR0CH4KS39aUzdX2UKGgGR8BweOwyIpH7aAdLXGgIR0CH4STr3TNMdX2UKGgGR8BqWmZVn27GaAdLQWgIR0CH4ZaZhKDkdX2UKGgGRz/5BTbWVeKLaAdLiGgIR0CH4czXSSeRdWUu"
|
48 |
+
},
|
49 |
+
"ep_success_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
+
},
|
53 |
+
"_n_updates": 782,
|
54 |
+
"observation_space": {
|
55 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
56 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
57 |
+
"dtype": "float32",
|
58 |
+
"bounded_below": "[ True True True True True True True True]",
|
59 |
+
"bounded_above": "[ True True True True True True True True]",
|
60 |
+
"_shape": [
|
61 |
+
8
|
62 |
+
],
|
63 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
66 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
67 |
+
"_np_random": null
|
68 |
+
},
|
69 |
+
"action_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
71 |
+
":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ0rJnBWuqLJVQhdvoS1dqd4wDaW5jlIoQxXg5yrR1M/gUC/UXG0UtR3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEoXvOFtdWJ1Yi4=",
|
72 |
+
"n": "4",
|
73 |
+
"start": "0",
|
74 |
+
"_shape": [],
|
75 |
+
"dtype": "int64",
|
76 |
+
"_np_random": "Generator(PCG64)"
|
77 |
+
},
|
78 |
+
"n_envs": 16,
|
79 |
+
"buffer_size": 1000000,
|
80 |
+
"batch_size": 32,
|
81 |
+
"learning_starts": 50000,
|
82 |
+
"tau": 1.0,
|
83 |
+
"gamma": 0.99,
|
84 |
+
"gradient_steps": 1,
|
85 |
+
"optimize_memory_usage": false,
|
86 |
+
"replay_buffer_class": {
|
87 |
+
":type:": "<class 'abc.ABCMeta'>",
|
88 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
89 |
+
"__module__": "stable_baselines3.common.buffers",
|
90 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
91 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7811ed5f4e50>",
|
92 |
+
"add": "<function ReplayBuffer.add at 0x7811ed5f4ee0>",
|
93 |
+
"sample": "<function ReplayBuffer.sample at 0x7811ed5f4f70>",
|
94 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7811ed5f5000>",
|
95 |
+
"__abstractmethods__": "frozenset()",
|
96 |
+
"_abc_impl": "<_abc._abc_data object at 0x7811ed600480>"
|
97 |
+
},
|
98 |
+
"replay_buffer_kwargs": {},
|
99 |
+
"train_freq": {
|
100 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
101 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
102 |
+
},
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 6252,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"lr_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
114 |
+
},
|
115 |
+
"batch_norm_stats": [],
|
116 |
+
"batch_norm_stats_target": [],
|
117 |
+
"exploration_schedule": {
|
118 |
+
":type:": "<class 'function'>",
|
119 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
120 |
+
}
|
121 |
+
}
|
LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f902aa46a012d2f2033347959bdc876c4911f6e447d1671074bf9cc32607d18d
|
3 |
+
size 45344
|
LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2f43e43dd623e98fb7c0bfc8e7e826fe2c46e5c3bf622c7fda0e960a1b294ce
|
3 |
+
size 44466
|
LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -12.68 +/- 142.52
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7811ed4309d0>", "_build": "<function DQNPolicy._build at 0x7811ed430a60>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7811ed430af0>", "forward": "<function DQNPolicy.forward at 0x7811ed430b80>", "_predict": "<function DQNPolicy._predict at 0x7811ed430c10>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7811ed430ca0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7811ed430d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7811ed429440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100032, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723227855327713489, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0g6z0egIE/24VoPplBeL/vlDE/Xr/kPgAAAAAAAAAAcD+Ovm6S5z42Lh8/veKCv3XLUL9uyKA+AAAAAAAAAAAAj3u9jhBsP/LSFr6B2wS/eBkJvl6ERLwAAAAAAAAAAJokKL1wV9Y+NvU9veNB0L4xRNA99tLAPQAAAAAAAAAAs1BtvTQIgD0OUDy+TQehvtLI57h67Fi9AAAAAAAAAAAA4oQ8m45ZPw58ob10qFK/Y1+qPqJbez4AAAAAAAAAAKCvGL4p5yg77uMgvrxgyzvMqsK8rvK0vAAAAAAAAAAAM2upvAx8rj88A4m+2gbEvgAKPLxyLw2+AAAAAAAAAAAmrso99BavP7ubWz4lgQy/ZisZP8r64D4AAAAAAAAAAOZOfb3hOpA9vTOEP01wgL8XQoy+IgAmPwAAAAAAAAAA02c8vt5ZBj/6OJE+ugBfv/lfV78L/4C9AAAAAAAAAABAaqI+bPqtPm2yuT6p+dW/iBrSPza56z4AAAAAAAAAAM0h/jyfyL0/Jt4CPtSNrb3PkGM+zvOePgAAAAAAAAAAOuAXPgonOj+NvJs+94Ocv88FFD+m/K4+AAAAAAAAAAAAvL69jCeFPnCQfb5JI5O+9FEYvpc7t70AAAAAAAAAAAAwgro1WbU/sBHOvZl0hT4rvpc6+bW6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMd5j0XRIQ/yntoPs5rcb/z3Cs/Y8HkPgAAAAAAAAAAmnyRvgBx8z6j3BU/0heDv3jQVL9FK6Q+AAAAAAAAAABNgHW9vg1vPxnMC741q/y+QHwIvusbZb0AAAAAAAAAABpwJr0RBts+YkgMvYsGwr4KoMY9LTo4PQAAAAAAAAAAM6xlvViGjj3V/0O+FziTvsVLJjv7mLu8AAAAAAAAAACaYIo8FkhePx9ig7092lm/shakPgh/bz4AAAAAAAAAANMQF74puh87tvghvosuzTusnrm8WTe2vAAAAAAAAAAAAO2SvEuWrz/q64y+THa2vsMzlrtO3tu9AAAAAAAAAACa6MU9jqWwPzqTWz5IqwW/h4sTP7P84D4AAAAAAAAAAFpzlL0ewr49rGCFPxuper+025y+baIbPwAAAAAAAAAAxkk/vgdcCz/u44I+zl1ev5SRVr8LMGG9AAAAAAAAAACjkKA+pA7BPq+puT7lj9K/NyjPP2q76z4AAAAAAAAAAM1n8jx3Bb4/GugCPiLGbb3+q1M+nfqePgAAAAAAAAAAmpwUPu8oQT8Hups+eRmZv+WlDz+N/a4+AAAAAAAAAABAkrm9wXWIPn8PjL5bvqK+Qr0TvlLC0b0AAAAAAAAAAAbTP77ddhO9iAWQvgVl4L1TXWE+Fo65PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1100, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwENhe40/GESMAWyUS2GMAXSUR0CHyTwXIlt1dX2UKGgGR8Biq00pEx7BaAdLPWgIR0CHyVVTaTOgdX2UKGgGR8BfypbILgGbaAdLN2gIR0CHyWNIbwSbdX2UKGgGR8BfJo4hllK9aAdLN2gIR0CHyYXY150KdX2UKGgGR8Bir4llbu+iaAdLSmgIR0CHyYHqNZNgdX2UKGgGR8BWMfwI+nqFaAdLY2gIR0CHyZR0EHMVdX2UKGgGR8Be1D5CWu5jaAdLOGgIR0CHybZRKpT/dX2UKGgGR8B0bv1vl2eQaAdLVWgIR0CHyeV0tAcDdX2UKGgGR8B6IB1r6+FlaAdLfmgIR0CHylWYF7ladX2UKGgGR8AvZCm/FirlaAdLTGgIR0CHyn7Z39rHdX2UKGgGR8BS3nDaXa8IaAdLUGgIR0CHyo/8l5WzdX2UKGgGR8BTawC0WuYAaAdLW2gIR0CHypf7aZhKdX2UKGgGR8BrJJsQ/X5GaAdLWmgIR0CHyy9h7VridX2UKGgGR8BHHPPTodMkaAdLXWgIR0CHy2cQyylfdX2UKGgGR8BikQp+c6NmaAdLOmgIR0CHy4fNiYsvdX2UKGgGR8A8P2cJ+lTFaAdLSGgIR0CHy7VEuxr0dX2UKGgGR8BjWaOLiuMdaAdLQWgIR0CHzEl5WzWxdX2UKGgGR8BAwJpWV/tqaAdLTmgIR0CHzJ9mYjSodX2UKGgGR8BG8fe+Eh7maAdLVWgIR0CHzK3ZPEbYdX2UKGgGR0A21KYzBRAKaAdLUGgIR0CHzSjdpItldX2UKGgGR0A2bY8Md92HaAdLWmgIR0CHzVxx1gYxdX2UKGgGR8BNJD0cwQDnaAdLWWgIR0CHzV0bLlmwdX2UKGgGR8Aw7dM0xdpqaAdLY2gIR0CHzkF1SwW4dX2UKGgGR8BZayVSn+AFaAdLV2gIR0CHzn7KJVKgdX2UKGgGR8BFI4+0PYnOaAdLXmgIR0CHzqHEdeY2dX2UKGgGR8BIdF3pwCKaaAdLXmgIR0CHztuXNTtLdX2UKGgGR8BO4cxTKkmAaAdLO2gIR0CHzvAnDziCdX2UKGgGR8BJOYZdfLLZaAdLU2gIR0CHz00/nnuBdX2UKGgGR8BrVmhRIjGDaAdLWmgIR0CHz34Y77sOdX2UKGgGR8A3CENOM2m6aAdLUWgIR0CHz4rK/20zdX2UKGgGR8BUd6rilzltaAdLd2gIR0CH0CCLdepodX2UKGgGR8BSfgQQL/jsaAdLW2gIR0CH0M1/lQuVdX2UKGgGR8BaSHZbpu/DaAdLe2gIR0CH0V7uUliSdX2UKGgGR0AbyZqmCROlaAdLYmgIR0CH0eK1G9YfdX2UKGgGR8BpCsVnEl3RaAdLYGgIR0CH0gLtu1nedX2UKGgGR0BCh9WyTpxFaAdLe2gIR0CH0o5yU9pzdX2UKGgGR8Bm7FfVqesgaAdLWGgIR0CH0vFwT/Q0dX2UKGgGR8Bpqxbt7a7FaAdLSGgIR0CH0xIzWPLgdX2UKGgGR8BCY1xKg7HRaAdLV2gIR0CH0z2gWac7dX2UKGgGR0BDRzvRZ2ZBaAdLZGgIR0CH03rylN1ydX2UKGgGR8BJ0nyEtdzGaAdLX2gIR0CH05WGyon8dX2UKGgGR8BVSwFHJ9y+aAdLQ2gIR0CH05ffGdZrdX2UKGgGR8BetcTewcHXaAdLbGgIR0CH06bXHzYmdX2UKGgGR0AT/sC1Z1V6aAdLgmgIR0CH08B5ooNNdX2UKGgGR0Bs1fAfuCwsaAdL92gIR0CH08SmIj4YdX2UKGgGR8BVwr2tdRixaAdLZ2gIR0CH1H850bLmdX2UKGgGR8By/umVJL/TaAdLbGgIR0CH1MkzoEB9dX2UKGgGR8BpTKMglnh9aAdLSmgIR0CH1QQ04zacdX2UKGgGR8BbSTfBN21VaAdLbmgIR0CH1h9YwIt2dX2UKGgGR8BJo5ckdFOPaAdLX2gIR0CH1lIQvpQldX2UKGgGR8Bdkgv6CUX6aAdLPWgIR0CH1nDkU9IPdX2UKGgGR8BCismF8G9paAdLWmgIR0CH1r3pwCKadX2UKGgGR8BwiT2AXl8xaAdLUmgIR0CH12xFAmiQdX2UKGgGR0A+QTtb9qDcaAdLeGgIR0CH15o1UEPldX2UKGgGR8BZOKmbb1yvaAdLaGgIR0CH18bF0gbIdX2UKGgGR8AoJGFzuF6BaAdLZWgIR0CH1+mUnogWdX2UKGgGR8BwRyTY/Vy4aAdLUmgIR0CH2DRzBAObdX2UKGgGR8BBtMSkCV8kaAdLS2gIR0CH2EP5HmRvdX2UKGgGR8BfCGYWtU4raAdLSGgIR0CH2GqFyq+8dX2UKGgGR8BPDVtoBaLXaAdLd2gIR0CH2RwOOKfndX2UKGgGR8BWktQsPJ7taAdLgWgIR0CH2TYfW+XadX2UKGgGR0AqeD0UXYUWaAdLfGgIR0CH2VhYNiH7dX2UKGgGR0BBUfTspoboaAdLfGgIR0CH2XOUMXrMdX2UKGgGR8BRnCvgWJrMaAdLfmgIR0CH2XnSv1UVdX2UKGgGR8A8ZuQp4KQaaAdLUmgIR0CH2fvl2eQNdX2UKGgGR8BsmqIrOJLvaAdLVGgIR0CH2mPvrnkldX2UKGgGR8Bq0QCyQgcMaAdLSmgIR0CH2oNjslcAdX2UKGgGR8BQMKNZNfw7aAdLZmgIR0CH2qukDZDidX2UKGgGR8BZr1d9lVcVaAdLTGgIR0CH2tyZrpJPdX2UKGgGR8BwAuxqwhW6aAdLS2gIR0CH2yF7D2rXdX2UKGgGR8BmKpHEuQIVaAdLPmgIR0CH2zk3CKrJdX2UKGgGR0BGll0YCQtBaAdLf2gIR0CH24CyyD7JdX2UKGgGR8BSp7wF1SwXaAdLWWgIR0CH3Dmgam4zdX2UKGgGR8Beo4gq3EydaAdLN2gIR0CH3EP4mCyydX2UKGgGR8A8I2tdRiw0aAdLcmgIR0CH3GyHmA9WdX2UKGgGR8BrARYkmhM8aAdLVGgIR0CH3LGBnSOSdX2UKGgGR8BYUfATIvJzaAdLgWgIR0CH3MejEehgdX2UKGgGR0BKII0qH447aAdLgmgIR0CH3PI7Njb0dX2UKGgGR8BqZCNEPUayaAdLRmgIR0CH3TBRhttRdX2UKGgGR8BwBW+49X9zaAdLT2gIR0CH3U8HObAldX2UKGgGR0BAA+TeO4oaaAdLnWgIR0CH3XaYeDFqdX2UKGgGR0A+0dupCKJmaAdLiGgIR0CH3eMQ2/BWdX2UKGgGR8Bh+ASeyzHCaAdLOmgIR0CH3iMlTm4idX2UKGgGR8BtFxFw1ivxaAdLWGgIR0CH3i7L+xW1dX2UKGgGR8BDiNYB/7SBaAdLUmgIR0CH3lZrYXfqdX2UKGgGR0A+NH6Mzdk8aAdLnmgIR0CH3q83++/QdX2UKGgGR8Boft1wHZ9NaAdLO2gIR0CH3tvE0iyIdX2UKGgGR0AyKd9lVcUuaAdLg2gIR0CH3uAksz2wdX2UKGgGR8BYu+fI0ZWJaAdLQ2gIR0CH3u82aUiZdX2UKGgGR8By06E4//vOaAdLU2gIR0CH3yIC2c8UdX2UKGgGR8BSp/CuU2UCaAdLY2gIR0CH33LIPsiTdX2UKGgGR8BgjUenyd4FaAdLSmgIR0CH38n0Cih4dX2UKGgGR8ApTJPIn0CjaAdLZGgIR0CH4GvTw2ETdX2UKGgGR8BqR/9R77bdaAdLUGgIR0CH4HGx2SuAdX2UKGgGR0A6rmbsniNsaAdLoGgIR0CH4Gu3c580dX2UKGgGR8Bjm8T+NtIkaAdLNGgIR0CH4IkdFOO9dX2UKGgGR8BQInAZbY9QaAdLS2gIR0CH4KS39aUzdX2UKGgGR8BweOwyIpH7aAdLXGgIR0CH4STr3TNMdX2UKGgGR8BqWmZVn27GaAdLQWgIR0CH4ZaZhKDkdX2UKGgGRz/5BTbWVeKLaAdLiGgIR0CH4czXSSeRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 782, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ0rJnBWuqLJVQhdvoS1dqd4wDaW5jlIoQxXg5yrR1M/gUC/UXG0UtR3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEoXvOFtdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7811ed5f4e50>", "add": "<function ReplayBuffer.add at 0x7811ed5f4ee0>", "sample": "<function ReplayBuffer.sample at 0x7811ed5f4f70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7811ed5f5000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7811ed600480>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 6252, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (194 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -12.680116600000002, "std_reward": 142.51880873029322, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-09T18:27:23.624705"}
|