dlantonia commited on
Commit
1d3201d
·
verified ·
1 Parent(s): 2af6c28

Upload DQN LunarLander-v2 trained agent

Browse files
LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc31e2647101c2ad6ab7a8d85a9dc5eacc50ff1d3f4776fdc029c43917247372
3
+ size 107901
LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-v2/data ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7811ed4309d0>",
9
+ "_build": "<function DQNPolicy._build at 0x7811ed430a60>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7811ed430af0>",
11
+ "forward": "<function DQNPolicy.forward at 0x7811ed430b80>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7811ed430c10>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7811ed430ca0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7811ed430d30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7811ed429440>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 100032,
21
+ "_total_timesteps": 100000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": null,
24
+ "action_noise": null,
25
+ "start_time": 1723227855327713489,
26
+ "learning_rate": 0.0001,
27
+ "tensorboard_log": null,
28
+ "_last_obs": {
29
+ ":type:": "<class 'numpy.ndarray'>",
30
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0g6z0egIE/24VoPplBeL/vlDE/Xr/kPgAAAAAAAAAAcD+Ovm6S5z42Lh8/veKCv3XLUL9uyKA+AAAAAAAAAAAAj3u9jhBsP/LSFr6B2wS/eBkJvl6ERLwAAAAAAAAAAJokKL1wV9Y+NvU9veNB0L4xRNA99tLAPQAAAAAAAAAAs1BtvTQIgD0OUDy+TQehvtLI57h67Fi9AAAAAAAAAAAA4oQ8m45ZPw58ob10qFK/Y1+qPqJbez4AAAAAAAAAAKCvGL4p5yg77uMgvrxgyzvMqsK8rvK0vAAAAAAAAAAAM2upvAx8rj88A4m+2gbEvgAKPLxyLw2+AAAAAAAAAAAmrso99BavP7ubWz4lgQy/ZisZP8r64D4AAAAAAAAAAOZOfb3hOpA9vTOEP01wgL8XQoy+IgAmPwAAAAAAAAAA02c8vt5ZBj/6OJE+ugBfv/lfV78L/4C9AAAAAAAAAABAaqI+bPqtPm2yuT6p+dW/iBrSPza56z4AAAAAAAAAAM0h/jyfyL0/Jt4CPtSNrb3PkGM+zvOePgAAAAAAAAAAOuAXPgonOj+NvJs+94Ocv88FFD+m/K4+AAAAAAAAAAAAvL69jCeFPnCQfb5JI5O+9FEYvpc7t70AAAAAAAAAAAAwgro1WbU/sBHOvZl0hT4rvpc6+bW6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
31
+ },
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMd5j0XRIQ/yntoPs5rcb/z3Cs/Y8HkPgAAAAAAAAAAmnyRvgBx8z6j3BU/0heDv3jQVL9FK6Q+AAAAAAAAAABNgHW9vg1vPxnMC741q/y+QHwIvusbZb0AAAAAAAAAABpwJr0RBts+YkgMvYsGwr4KoMY9LTo4PQAAAAAAAAAAM6xlvViGjj3V/0O+FziTvsVLJjv7mLu8AAAAAAAAAACaYIo8FkhePx9ig7092lm/shakPgh/bz4AAAAAAAAAANMQF74puh87tvghvosuzTusnrm8WTe2vAAAAAAAAAAAAO2SvEuWrz/q64y+THa2vsMzlrtO3tu9AAAAAAAAAACa6MU9jqWwPzqTWz5IqwW/h4sTP7P84D4AAAAAAAAAAFpzlL0ewr49rGCFPxuper+025y+baIbPwAAAAAAAAAAxkk/vgdcCz/u44I+zl1ev5SRVr8LMGG9AAAAAAAAAACjkKA+pA7BPq+puT7lj9K/NyjPP2q76z4AAAAAAAAAAM1n8jx3Bb4/GugCPiLGbb3+q1M+nfqePgAAAAAAAAAAmpwUPu8oQT8Hups+eRmZv+WlDz+N/a4+AAAAAAAAAABAkrm9wXWIPn8PjL5bvqK+Qr0TvlLC0b0AAAAAAAAAAAbTP77ddhO9iAWQvgVl4L1TXWE+Fo65PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_episode_num": 1100,
41
+ "use_sde": false,
42
+ "sde_sample_freq": -1,
43
+ "_current_progress_remaining": -0.000320000000000098,
44
+ "_stats_window_size": 100,
45
+ "ep_info_buffer": {
46
+ ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwENhe40/GESMAWyUS2GMAXSUR0CHyTwXIlt1dX2UKGgGR8Biq00pEx7BaAdLPWgIR0CHyVVTaTOgdX2UKGgGR8BfypbILgGbaAdLN2gIR0CHyWNIbwSbdX2UKGgGR8BfJo4hllK9aAdLN2gIR0CHyYXY150KdX2UKGgGR8Bir4llbu+iaAdLSmgIR0CHyYHqNZNgdX2UKGgGR8BWMfwI+nqFaAdLY2gIR0CHyZR0EHMVdX2UKGgGR8Be1D5CWu5jaAdLOGgIR0CHybZRKpT/dX2UKGgGR8B0bv1vl2eQaAdLVWgIR0CHyeV0tAcDdX2UKGgGR8B6IB1r6+FlaAdLfmgIR0CHylWYF7ladX2UKGgGR8AvZCm/FirlaAdLTGgIR0CHyn7Z39rHdX2UKGgGR8BS3nDaXa8IaAdLUGgIR0CHyo/8l5WzdX2UKGgGR8BTawC0WuYAaAdLW2gIR0CHypf7aZhKdX2UKGgGR8BrJJsQ/X5GaAdLWmgIR0CHyy9h7VridX2UKGgGR8BHHPPTodMkaAdLXWgIR0CHy2cQyylfdX2UKGgGR8BikQp+c6NmaAdLOmgIR0CHy4fNiYsvdX2UKGgGR8A8P2cJ+lTFaAdLSGgIR0CHy7VEuxr0dX2UKGgGR8BjWaOLiuMdaAdLQWgIR0CHzEl5WzWxdX2UKGgGR8BAwJpWV/tqaAdLTmgIR0CHzJ9mYjSodX2UKGgGR8BG8fe+Eh7maAdLVWgIR0CHzK3ZPEbYdX2UKGgGR0A21KYzBRAKaAdLUGgIR0CHzSjdpItldX2UKGgGR0A2bY8Md92HaAdLWmgIR0CHzVxx1gYxdX2UKGgGR8BNJD0cwQDnaAdLWWgIR0CHzV0bLlmwdX2UKGgGR8Aw7dM0xdpqaAdLY2gIR0CHzkF1SwW4dX2UKGgGR8BZayVSn+AFaAdLV2gIR0CHzn7KJVKgdX2UKGgGR8BFI4+0PYnOaAdLXmgIR0CHzqHEdeY2dX2UKGgGR8BIdF3pwCKaaAdLXmgIR0CHztuXNTtLdX2UKGgGR8BO4cxTKkmAaAdLO2gIR0CHzvAnDziCdX2UKGgGR8BJOYZdfLLZaAdLU2gIR0CHz00/nnuBdX2UKGgGR8BrVmhRIjGDaAdLWmgIR0CHz34Y77sOdX2UKGgGR8A3CENOM2m6aAdLUWgIR0CHz4rK/20zdX2UKGgGR8BUd6rilzltaAdLd2gIR0CH0CCLdepodX2UKGgGR8BSfgQQL/jsaAdLW2gIR0CH0M1/lQuVdX2UKGgGR8BaSHZbpu/DaAdLe2gIR0CH0V7uUliSdX2UKGgGR0AbyZqmCROlaAdLYmgIR0CH0eK1G9YfdX2UKGgGR8BpCsVnEl3RaAdLYGgIR0CH0gLtu1nedX2UKGgGR0BCh9WyTpxFaAdLe2gIR0CH0o5yU9pzdX2UKGgGR8Bm7FfVqesgaAdLWGgIR0CH0vFwT/Q0dX2UKGgGR8Bpqxbt7a7FaAdLSGgIR0CH0xIzWPLgdX2UKGgGR8BCY1xKg7HRaAdLV2gIR0CH0z2gWac7dX2UKGgGR0BDRzvRZ2ZBaAdLZGgIR0CH03rylN1ydX2UKGgGR8BJ0nyEtdzGaAdLX2gIR0CH05WGyon8dX2UKGgGR8BVSwFHJ9y+aAdLQ2gIR0CH05ffGdZrdX2UKGgGR8BetcTewcHXaAdLbGgIR0CH06bXHzYmdX2UKGgGR0AT/sC1Z1V6aAdLgmgIR0CH08B5ooNNdX2UKGgGR0Bs1fAfuCwsaAdL92gIR0CH08SmIj4YdX2UKGgGR8BVwr2tdRixaAdLZ2gIR0CH1H850bLmdX2UKGgGR8By/umVJL/TaAdLbGgIR0CH1MkzoEB9dX2UKGgGR8BpTKMglnh9aAdLSmgIR0CH1QQ04zacdX2UKGgGR8BbSTfBN21VaAdLbmgIR0CH1h9YwIt2dX2UKGgGR8BJo5ckdFOPaAdLX2gIR0CH1lIQvpQldX2UKGgGR8Bdkgv6CUX6aAdLPWgIR0CH1nDkU9IPdX2UKGgGR8BCismF8G9paAdLWmgIR0CH1r3pwCKadX2UKGgGR8BwiT2AXl8xaAdLUmgIR0CH12xFAmiQdX2UKGgGR0A+QTtb9qDcaAdLeGgIR0CH15o1UEPldX2UKGgGR8BZOKmbb1yvaAdLaGgIR0CH18bF0gbIdX2UKGgGR8AoJGFzuF6BaAdLZWgIR0CH1+mUnogWdX2UKGgGR8BwRyTY/Vy4aAdLUmgIR0CH2DRzBAObdX2UKGgGR8BBtMSkCV8kaAdLS2gIR0CH2EP5HmRvdX2UKGgGR8BfCGYWtU4raAdLSGgIR0CH2GqFyq+8dX2UKGgGR8BPDVtoBaLXaAdLd2gIR0CH2RwOOKfndX2UKGgGR8BWktQsPJ7taAdLgWgIR0CH2TYfW+XadX2UKGgGR0AqeD0UXYUWaAdLfGgIR0CH2VhYNiH7dX2UKGgGR0BBUfTspoboaAdLfGgIR0CH2XOUMXrMdX2UKGgGR8BRnCvgWJrMaAdLfmgIR0CH2XnSv1UVdX2UKGgGR8A8ZuQp4KQaaAdLUmgIR0CH2fvl2eQNdX2UKGgGR8BsmqIrOJLvaAdLVGgIR0CH2mPvrnkldX2UKGgGR8Bq0QCyQgcMaAdLSmgIR0CH2oNjslcAdX2UKGgGR8BQMKNZNfw7aAdLZmgIR0CH2qukDZDidX2UKGgGR8BZr1d9lVcVaAdLTGgIR0CH2tyZrpJPdX2UKGgGR8BwAuxqwhW6aAdLS2gIR0CH2yF7D2rXdX2UKGgGR8BmKpHEuQIVaAdLPmgIR0CH2zk3CKrJdX2UKGgGR0BGll0YCQtBaAdLf2gIR0CH24CyyD7JdX2UKGgGR8BSp7wF1SwXaAdLWWgIR0CH3Dmgam4zdX2UKGgGR8Beo4gq3EydaAdLN2gIR0CH3EP4mCyydX2UKGgGR8A8I2tdRiw0aAdLcmgIR0CH3GyHmA9WdX2UKGgGR8BrARYkmhM8aAdLVGgIR0CH3LGBnSOSdX2UKGgGR8BYUfATIvJzaAdLgWgIR0CH3MejEehgdX2UKGgGR0BKII0qH447aAdLgmgIR0CH3PI7Njb0dX2UKGgGR8BqZCNEPUayaAdLRmgIR0CH3TBRhttRdX2UKGgGR8BwBW+49X9zaAdLT2gIR0CH3U8HObAldX2UKGgGR0BAA+TeO4oaaAdLnWgIR0CH3XaYeDFqdX2UKGgGR0A+0dupCKJmaAdLiGgIR0CH3eMQ2/BWdX2UKGgGR8Bh+ASeyzHCaAdLOmgIR0CH3iMlTm4idX2UKGgGR8BtFxFw1ivxaAdLWGgIR0CH3i7L+xW1dX2UKGgGR8BDiNYB/7SBaAdLUmgIR0CH3lZrYXfqdX2UKGgGR0A+NH6Mzdk8aAdLnmgIR0CH3q83++/QdX2UKGgGR8Boft1wHZ9NaAdLO2gIR0CH3tvE0iyIdX2UKGgGR0AyKd9lVcUuaAdLg2gIR0CH3uAksz2wdX2UKGgGR8BYu+fI0ZWJaAdLQ2gIR0CH3u82aUiZdX2UKGgGR8By06E4//vOaAdLU2gIR0CH3yIC2c8UdX2UKGgGR8BSp/CuU2UCaAdLY2gIR0CH33LIPsiTdX2UKGgGR8BgjUenyd4FaAdLSmgIR0CH38n0Cih4dX2UKGgGR8ApTJPIn0CjaAdLZGgIR0CH4GvTw2ETdX2UKGgGR8BqR/9R77bdaAdLUGgIR0CH4HGx2SuAdX2UKGgGR0A6rmbsniNsaAdLoGgIR0CH4Gu3c580dX2UKGgGR8Bjm8T+NtIkaAdLNGgIR0CH4IkdFOO9dX2UKGgGR8BQInAZbY9QaAdLS2gIR0CH4KS39aUzdX2UKGgGR8BweOwyIpH7aAdLXGgIR0CH4STr3TNMdX2UKGgGR8BqWmZVn27GaAdLQWgIR0CH4ZaZhKDkdX2UKGgGRz/5BTbWVeKLaAdLiGgIR0CH4czXSSeRdWUu"
48
+ },
49
+ "ep_success_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
+ },
53
+ "_n_updates": 782,
54
+ "observation_space": {
55
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
56
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
57
+ "dtype": "float32",
58
+ "bounded_below": "[ True True True True True True True True]",
59
+ "bounded_above": "[ True True True True True True True True]",
60
+ "_shape": [
61
+ 8
62
+ ],
63
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
64
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
65
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
66
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
67
+ "_np_random": null
68
+ },
69
+ "action_space": {
70
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
71
+ ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ0rJnBWuqLJVQhdvoS1dqd4wDaW5jlIoQxXg5yrR1M/gUC/UXG0UtR3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEoXvOFtdWJ1Yi4=",
72
+ "n": "4",
73
+ "start": "0",
74
+ "_shape": [],
75
+ "dtype": "int64",
76
+ "_np_random": "Generator(PCG64)"
77
+ },
78
+ "n_envs": 16,
79
+ "buffer_size": 1000000,
80
+ "batch_size": 32,
81
+ "learning_starts": 50000,
82
+ "tau": 1.0,
83
+ "gamma": 0.99,
84
+ "gradient_steps": 1,
85
+ "optimize_memory_usage": false,
86
+ "replay_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
91
+ "__init__": "<function ReplayBuffer.__init__ at 0x7811ed5f4e50>",
92
+ "add": "<function ReplayBuffer.add at 0x7811ed5f4ee0>",
93
+ "sample": "<function ReplayBuffer.sample at 0x7811ed5f4f70>",
94
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7811ed5f5000>",
95
+ "__abstractmethods__": "frozenset()",
96
+ "_abc_impl": "<_abc._abc_data object at 0x7811ed600480>"
97
+ },
98
+ "replay_buffer_kwargs": {},
99
+ "train_freq": {
100
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
101
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
102
+ },
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.05,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 625,
108
+ "_n_calls": 6252,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.05,
111
+ "lr_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
114
+ },
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": [],
117
+ "exploration_schedule": {
118
+ ":type:": "<class 'function'>",
119
+ ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
120
+ }
121
+ }
LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f902aa46a012d2f2033347959bdc876c4911f6e447d1671074bf9cc32607d18d
3
+ size 45344
LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f43e43dd623e98fb7c0bfc8e7e826fe2c46e5c3bf622c7fda0e960a1b294ce
3
+ size 44466
LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -12.68 +/- 142.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7811ed4309d0>", "_build": "<function DQNPolicy._build at 0x7811ed430a60>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7811ed430af0>", "forward": "<function DQNPolicy.forward at 0x7811ed430b80>", "_predict": "<function DQNPolicy._predict at 0x7811ed430c10>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7811ed430ca0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7811ed430d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7811ed429440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100032, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723227855327713489, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0g6z0egIE/24VoPplBeL/vlDE/Xr/kPgAAAAAAAAAAcD+Ovm6S5z42Lh8/veKCv3XLUL9uyKA+AAAAAAAAAAAAj3u9jhBsP/LSFr6B2wS/eBkJvl6ERLwAAAAAAAAAAJokKL1wV9Y+NvU9veNB0L4xRNA99tLAPQAAAAAAAAAAs1BtvTQIgD0OUDy+TQehvtLI57h67Fi9AAAAAAAAAAAA4oQ8m45ZPw58ob10qFK/Y1+qPqJbez4AAAAAAAAAAKCvGL4p5yg77uMgvrxgyzvMqsK8rvK0vAAAAAAAAAAAM2upvAx8rj88A4m+2gbEvgAKPLxyLw2+AAAAAAAAAAAmrso99BavP7ubWz4lgQy/ZisZP8r64D4AAAAAAAAAAOZOfb3hOpA9vTOEP01wgL8XQoy+IgAmPwAAAAAAAAAA02c8vt5ZBj/6OJE+ugBfv/lfV78L/4C9AAAAAAAAAABAaqI+bPqtPm2yuT6p+dW/iBrSPza56z4AAAAAAAAAAM0h/jyfyL0/Jt4CPtSNrb3PkGM+zvOePgAAAAAAAAAAOuAXPgonOj+NvJs+94Ocv88FFD+m/K4+AAAAAAAAAAAAvL69jCeFPnCQfb5JI5O+9FEYvpc7t70AAAAAAAAAAAAwgro1WbU/sBHOvZl0hT4rvpc6+bW6PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMd5j0XRIQ/yntoPs5rcb/z3Cs/Y8HkPgAAAAAAAAAAmnyRvgBx8z6j3BU/0heDv3jQVL9FK6Q+AAAAAAAAAABNgHW9vg1vPxnMC741q/y+QHwIvusbZb0AAAAAAAAAABpwJr0RBts+YkgMvYsGwr4KoMY9LTo4PQAAAAAAAAAAM6xlvViGjj3V/0O+FziTvsVLJjv7mLu8AAAAAAAAAACaYIo8FkhePx9ig7092lm/shakPgh/bz4AAAAAAAAAANMQF74puh87tvghvosuzTusnrm8WTe2vAAAAAAAAAAAAO2SvEuWrz/q64y+THa2vsMzlrtO3tu9AAAAAAAAAACa6MU9jqWwPzqTWz5IqwW/h4sTP7P84D4AAAAAAAAAAFpzlL0ewr49rGCFPxuper+025y+baIbPwAAAAAAAAAAxkk/vgdcCz/u44I+zl1ev5SRVr8LMGG9AAAAAAAAAACjkKA+pA7BPq+puT7lj9K/NyjPP2q76z4AAAAAAAAAAM1n8jx3Bb4/GugCPiLGbb3+q1M+nfqePgAAAAAAAAAAmpwUPu8oQT8Hups+eRmZv+WlDz+N/a4+AAAAAAAAAABAkrm9wXWIPn8PjL5bvqK+Qr0TvlLC0b0AAAAAAAAAAAbTP77ddhO9iAWQvgVl4L1TXWE+Fo65PgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1100, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.000320000000000098, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwENhe40/GESMAWyUS2GMAXSUR0CHyTwXIlt1dX2UKGgGR8Biq00pEx7BaAdLPWgIR0CHyVVTaTOgdX2UKGgGR8BfypbILgGbaAdLN2gIR0CHyWNIbwSbdX2UKGgGR8BfJo4hllK9aAdLN2gIR0CHyYXY150KdX2UKGgGR8Bir4llbu+iaAdLSmgIR0CHyYHqNZNgdX2UKGgGR8BWMfwI+nqFaAdLY2gIR0CHyZR0EHMVdX2UKGgGR8Be1D5CWu5jaAdLOGgIR0CHybZRKpT/dX2UKGgGR8B0bv1vl2eQaAdLVWgIR0CHyeV0tAcDdX2UKGgGR8B6IB1r6+FlaAdLfmgIR0CHylWYF7ladX2UKGgGR8AvZCm/FirlaAdLTGgIR0CHyn7Z39rHdX2UKGgGR8BS3nDaXa8IaAdLUGgIR0CHyo/8l5WzdX2UKGgGR8BTawC0WuYAaAdLW2gIR0CHypf7aZhKdX2UKGgGR8BrJJsQ/X5GaAdLWmgIR0CHyy9h7VridX2UKGgGR8BHHPPTodMkaAdLXWgIR0CHy2cQyylfdX2UKGgGR8BikQp+c6NmaAdLOmgIR0CHy4fNiYsvdX2UKGgGR8A8P2cJ+lTFaAdLSGgIR0CHy7VEuxr0dX2UKGgGR8BjWaOLiuMdaAdLQWgIR0CHzEl5WzWxdX2UKGgGR8BAwJpWV/tqaAdLTmgIR0CHzJ9mYjSodX2UKGgGR8BG8fe+Eh7maAdLVWgIR0CHzK3ZPEbYdX2UKGgGR0A21KYzBRAKaAdLUGgIR0CHzSjdpItldX2UKGgGR0A2bY8Md92HaAdLWmgIR0CHzVxx1gYxdX2UKGgGR8BNJD0cwQDnaAdLWWgIR0CHzV0bLlmwdX2UKGgGR8Aw7dM0xdpqaAdLY2gIR0CHzkF1SwW4dX2UKGgGR8BZayVSn+AFaAdLV2gIR0CHzn7KJVKgdX2UKGgGR8BFI4+0PYnOaAdLXmgIR0CHzqHEdeY2dX2UKGgGR8BIdF3pwCKaaAdLXmgIR0CHztuXNTtLdX2UKGgGR8BO4cxTKkmAaAdLO2gIR0CHzvAnDziCdX2UKGgGR8BJOYZdfLLZaAdLU2gIR0CHz00/nnuBdX2UKGgGR8BrVmhRIjGDaAdLWmgIR0CHz34Y77sOdX2UKGgGR8A3CENOM2m6aAdLUWgIR0CHz4rK/20zdX2UKGgGR8BUd6rilzltaAdLd2gIR0CH0CCLdepodX2UKGgGR8BSfgQQL/jsaAdLW2gIR0CH0M1/lQuVdX2UKGgGR8BaSHZbpu/DaAdLe2gIR0CH0V7uUliSdX2UKGgGR0AbyZqmCROlaAdLYmgIR0CH0eK1G9YfdX2UKGgGR8BpCsVnEl3RaAdLYGgIR0CH0gLtu1nedX2UKGgGR0BCh9WyTpxFaAdLe2gIR0CH0o5yU9pzdX2UKGgGR8Bm7FfVqesgaAdLWGgIR0CH0vFwT/Q0dX2UKGgGR8Bpqxbt7a7FaAdLSGgIR0CH0xIzWPLgdX2UKGgGR8BCY1xKg7HRaAdLV2gIR0CH0z2gWac7dX2UKGgGR0BDRzvRZ2ZBaAdLZGgIR0CH03rylN1ydX2UKGgGR8BJ0nyEtdzGaAdLX2gIR0CH05WGyon8dX2UKGgGR8BVSwFHJ9y+aAdLQ2gIR0CH05ffGdZrdX2UKGgGR8BetcTewcHXaAdLbGgIR0CH06bXHzYmdX2UKGgGR0AT/sC1Z1V6aAdLgmgIR0CH08B5ooNNdX2UKGgGR0Bs1fAfuCwsaAdL92gIR0CH08SmIj4YdX2UKGgGR8BVwr2tdRixaAdLZ2gIR0CH1H850bLmdX2UKGgGR8By/umVJL/TaAdLbGgIR0CH1MkzoEB9dX2UKGgGR8BpTKMglnh9aAdLSmgIR0CH1QQ04zacdX2UKGgGR8BbSTfBN21VaAdLbmgIR0CH1h9YwIt2dX2UKGgGR8BJo5ckdFOPaAdLX2gIR0CH1lIQvpQldX2UKGgGR8Bdkgv6CUX6aAdLPWgIR0CH1nDkU9IPdX2UKGgGR8BCismF8G9paAdLWmgIR0CH1r3pwCKadX2UKGgGR8BwiT2AXl8xaAdLUmgIR0CH12xFAmiQdX2UKGgGR0A+QTtb9qDcaAdLeGgIR0CH15o1UEPldX2UKGgGR8BZOKmbb1yvaAdLaGgIR0CH18bF0gbIdX2UKGgGR8AoJGFzuF6BaAdLZWgIR0CH1+mUnogWdX2UKGgGR8BwRyTY/Vy4aAdLUmgIR0CH2DRzBAObdX2UKGgGR8BBtMSkCV8kaAdLS2gIR0CH2EP5HmRvdX2UKGgGR8BfCGYWtU4raAdLSGgIR0CH2GqFyq+8dX2UKGgGR8BPDVtoBaLXaAdLd2gIR0CH2RwOOKfndX2UKGgGR8BWktQsPJ7taAdLgWgIR0CH2TYfW+XadX2UKGgGR0AqeD0UXYUWaAdLfGgIR0CH2VhYNiH7dX2UKGgGR0BBUfTspoboaAdLfGgIR0CH2XOUMXrMdX2UKGgGR8BRnCvgWJrMaAdLfmgIR0CH2XnSv1UVdX2UKGgGR8A8ZuQp4KQaaAdLUmgIR0CH2fvl2eQNdX2UKGgGR8BsmqIrOJLvaAdLVGgIR0CH2mPvrnkldX2UKGgGR8Bq0QCyQgcMaAdLSmgIR0CH2oNjslcAdX2UKGgGR8BQMKNZNfw7aAdLZmgIR0CH2qukDZDidX2UKGgGR8BZr1d9lVcVaAdLTGgIR0CH2tyZrpJPdX2UKGgGR8BwAuxqwhW6aAdLS2gIR0CH2yF7D2rXdX2UKGgGR8BmKpHEuQIVaAdLPmgIR0CH2zk3CKrJdX2UKGgGR0BGll0YCQtBaAdLf2gIR0CH24CyyD7JdX2UKGgGR8BSp7wF1SwXaAdLWWgIR0CH3Dmgam4zdX2UKGgGR8Beo4gq3EydaAdLN2gIR0CH3EP4mCyydX2UKGgGR8A8I2tdRiw0aAdLcmgIR0CH3GyHmA9WdX2UKGgGR8BrARYkmhM8aAdLVGgIR0CH3LGBnSOSdX2UKGgGR8BYUfATIvJzaAdLgWgIR0CH3MejEehgdX2UKGgGR0BKII0qH447aAdLgmgIR0CH3PI7Njb0dX2UKGgGR8BqZCNEPUayaAdLRmgIR0CH3TBRhttRdX2UKGgGR8BwBW+49X9zaAdLT2gIR0CH3U8HObAldX2UKGgGR0BAA+TeO4oaaAdLnWgIR0CH3XaYeDFqdX2UKGgGR0A+0dupCKJmaAdLiGgIR0CH3eMQ2/BWdX2UKGgGR8Bh+ASeyzHCaAdLOmgIR0CH3iMlTm4idX2UKGgGR8BtFxFw1ivxaAdLWGgIR0CH3i7L+xW1dX2UKGgGR8BDiNYB/7SBaAdLUmgIR0CH3lZrYXfqdX2UKGgGR0A+NH6Mzdk8aAdLnmgIR0CH3q83++/QdX2UKGgGR8Boft1wHZ9NaAdLO2gIR0CH3tvE0iyIdX2UKGgGR0AyKd9lVcUuaAdLg2gIR0CH3uAksz2wdX2UKGgGR8BYu+fI0ZWJaAdLQ2gIR0CH3u82aUiZdX2UKGgGR8By06E4//vOaAdLU2gIR0CH3yIC2c8UdX2UKGgGR8BSp/CuU2UCaAdLY2gIR0CH33LIPsiTdX2UKGgGR8BgjUenyd4FaAdLSmgIR0CH38n0Cih4dX2UKGgGR8ApTJPIn0CjaAdLZGgIR0CH4GvTw2ETdX2UKGgGR8BqR/9R77bdaAdLUGgIR0CH4HGx2SuAdX2UKGgGR0A6rmbsniNsaAdLoGgIR0CH4Gu3c580dX2UKGgGR8Bjm8T+NtIkaAdLNGgIR0CH4IkdFOO9dX2UKGgGR8BQInAZbY9QaAdLS2gIR0CH4KS39aUzdX2UKGgGR8BweOwyIpH7aAdLXGgIR0CH4STr3TNMdX2UKGgGR8BqWmZVn27GaAdLQWgIR0CH4ZaZhKDkdX2UKGgGRz/5BTbWVeKLaAdLiGgIR0CH4czXSSeRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 782, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ0rJnBWuqLJVQhdvoS1dqd4wDaW5jlIoQxXg5yrR1M/gUC/UXG0UtR3WMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEoXvOFtdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7811ed5f4e50>", "add": "<function ReplayBuffer.add at 0x7811ed5f4ee0>", "sample": "<function ReplayBuffer.sample at 0x7811ed5f4f70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7811ed5f5000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7811ed600480>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 6252, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLckMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -12.680116600000002, "std_reward": 142.51880873029322, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-09T18:27:23.624705"}