Upload PPO FrozenLake-v1 trained agent
Browse files- FrozenLake-v1.zip +3 -0
- FrozenLake-v1/_stable_baselines3_version +1 -0
- FrozenLake-v1/data +93 -0
- FrozenLake-v1/policy.optimizer.pth +3 -0
- FrozenLake-v1/policy.pth +3 -0
- FrozenLake-v1/pytorch_variables.pth +3 -0
- FrozenLake-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
FrozenLake-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb1ea09632f6cb6f18fd6d1fcf8e5c2a1645bf2771dfad79bfb94308984bbf4e
|
3 |
+
size 158606
|
FrozenLake-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
FrozenLake-v1/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e6590d6eb90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6590d6ec20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6590d6ecb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6590d6ed40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e6590d6edd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e6590d6ee60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6590d6eef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6590d6ef80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e6590d6f010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6590d6f0a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6590d6f130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6590d6f1c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e6590d17380>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1723220730550852281,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAgAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAJAAAAAAAAAA4AAAAAAAAACgAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAoAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSxqMAXSUR0B5H9w2l2vCdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0B5IASIxgy/dX2UKGgGRz/wAAAAAAAAaAdLCWgIR0B5IBy3kPtldX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5H/OqvNeMdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0B5ICQ6p5u7dX2UKGgGRwAAAAAAAAAAaAdLEWgIR0B5IGih37k5dX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IIyIpH7QdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IKAQQL/kdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0B5IGNIbwSbdX2UKGgGRwAAAAAAAAAAaAdLPWgIR0B5IKsLfDUFdX2UKGgGRz/wAAAAAAAAaAdLLWgIR0B5IJpPAO8TdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5IHyI55qudX2UKGgGRz/wAAAAAAAAaAdLGWgIR0B5IMSsbNr1dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5INfWtlqbdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0B5IOz6ab4KdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0B5IMywfQrudX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IRtCRfWudX2UKGgGRz/wAAAAAAAAaAdLFWgIR0B5IQvYe1a4dX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IUHxBmf5dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0B5IU0xdpqRdX2UKGgGRwAAAAAAAAAAaAdLHmgIR0B5IWyE+PildX2UKGgGRwAAAAAAAAAAaAdLQ2gIR0B5IX/0dzXCdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5IWUPhAGCdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0B5Ia65Gz8hdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5IdKHwgDBdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0B5IdNEgGKRdX2UKGgGRz/wAAAAAAAAaAdLImgIR0B5IbJMg2ZRdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5IdSKm8/VdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5IeiTMaCMdX2UKGgGRz/wAAAAAAAAaAdLSmgIR0B5IhqN6w+udX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5IiP/7zkIdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IjAk9lmOdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0B5Ijx7RfF8dX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IhWQwK0EdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5ImlZX+2mdX2UKGgGRz/wAAAAAAAAaAdLRGgIR0B5IjHZK3/hdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0B5IjsyBTXKdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0B5Iok9lmOEdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5InZnL7oCdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0B5IoKCxu89dX2UKGgGRwAAAAAAAAAAaAdLD2gIR0B5InrkbPyDdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IsNOM2m6dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5IrW3BpHqdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5IpWuHN5ddX2UKGgGRz/wAAAAAAAAaAdLTWgIR0B5Is4gieNDdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0B5It7eEZivdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5IwvPC2tudX2UKGgGRz/wAAAAAAAAaAdLRGgIR0B5ItdxAB1cdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5Is7MgU1ydX2UKGgGRz/wAAAAAAAAaAdLF2gIR0B5IyM3qAz6dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0B5Iyhxo7FLdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0B5I0fozN2UdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0B5I1QCSzPbdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5I1kjHGS7dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5I5I6Kcd6dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5I4zbeuV5dX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5I8zi0fHQdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0B5I/HQyAQQdX2UKGgGRwAAAAAAAAAAaAdLLmgIR0B5I+2BreqJdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0B5I/bL2YfGdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0B5I9YzSCvpdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0B5I82wV0tAdX2UKGgGRz/wAAAAAAAAaAdLKmgIR0B5JCgHu7YkdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0B5JCm0mdAgdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0B5JCVPepGXdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JHXXiBGydX2UKGgGRz/wAAAAAAAAaAdLFWgIR0B5JHyI55qudX2UKGgGRz/wAAAAAAAAaAdLR2gIR0B5JFvOyE+QdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0B5JIj5bhWHdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0B5JMMjNY8udX2UKGgGRz/wAAAAAAAAaAdLOGgIR0B5JMtUXHindX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JOATZg5SdX2UKGgGRz/wAAAAAAAAaAdLImgIR0B5JQ86mwaBdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0B5JQePq9oOdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0B5JSylenhsdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JRpaiblSdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0B5JQ8bJfY0dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0B5JURtgrpadX2UKGgGRwAAAAAAAAAAaAdLXGgIR0B5JZWXC0ngdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0B5JWVjZteldX2UKGgGRz/wAAAAAAAAaAdLCWgIR0B5JdQAMlTndX2UKGgGRz/wAAAAAAAAaAdLKGgIR0B5Jd2vB7/odX2UKGgGRz/wAAAAAAAAaAdLUGgIR0B5JezzErGzdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5Jc5QxesxdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0B5Jg2BJ7LMdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0B5JjBguyu7dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0B5JjyxzJZGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5Jjl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLJWgIR0B5Jg2OyVv/dX2UKGgGRwAAAAAAAAAAaAdLC2gIR0B5JlekYXO4dX2UKGgGRwAAAAAAAAAAaAdLRmgIR0B5Jjl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLN2gIR0B5Jn8pCrtFdX2UKGgGRz/wAAAAAAAAaAdLY2gIR0B5JnZSNwR5dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0B5JqYE4ecQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5Jp2yLQ5WdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0B5JrsZ5zHTdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5J0R+SbH7dX2UKGgGRwAAAAAAAAAAaAdLHmgIR0B5J0IcBEKFdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0B5J2PIXCTEdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0B5J2e5Fw1jdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
57 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"n": "16",
|
59 |
+
"start": "0",
|
60 |
+
"_shape": [],
|
61 |
+
"dtype": "int64",
|
62 |
+
"_np_random": null
|
63 |
+
},
|
64 |
+
"action_space": {
|
65 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
66 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
67 |
+
"n": "4",
|
68 |
+
"start": "0",
|
69 |
+
"_shape": [],
|
70 |
+
"dtype": "int64",
|
71 |
+
"_np_random": null
|
72 |
+
},
|
73 |
+
"n_envs": 16,
|
74 |
+
"n_steps": 1024,
|
75 |
+
"gamma": 0.999,
|
76 |
+
"gae_lambda": 0.98,
|
77 |
+
"ent_coef": 0.01,
|
78 |
+
"vf_coef": 0.5,
|
79 |
+
"max_grad_norm": 0.5,
|
80 |
+
"batch_size": 64,
|
81 |
+
"n_epochs": 4,
|
82 |
+
"clip_range": {
|
83 |
+
":type:": "<class 'function'>",
|
84 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
85 |
+
},
|
86 |
+
"clip_range_vf": null,
|
87 |
+
"normalize_advantage": true,
|
88 |
+
"target_kl": null,
|
89 |
+
"lr_schedule": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
92 |
+
}
|
93 |
+
}
|
FrozenLake-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e910855c08ad3faf459ecf79ac082328833c36e385c7af2b7e5d6ade205b244
|
3 |
+
size 96554
|
FrozenLake-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b40915dc387075b9d7699cec87fd27c7e4ce5e12bfb13b9c8667a9c7603fe67f
|
3 |
+
size 47858
|
FrozenLake-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
FrozenLake-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FrozenLake-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FrozenLake-v1
|
16 |
+
type: FrozenLake-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 0.80 +/- 0.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **FrozenLake-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **FrozenLake-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e6590d6eb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e6590d6ec20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e6590d6ecb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e6590d6ed40>", "_build": "<function ActorCriticPolicy._build at 0x7e6590d6edd0>", "forward": "<function ActorCriticPolicy.forward at 0x7e6590d6ee60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e6590d6eef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e6590d6ef80>", "_predict": "<function ActorCriticPolicy._predict at 0x7e6590d6f010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e6590d6f0a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e6590d6f130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e6590d6f1c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6590d17380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723220730550852281, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV8wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAAgAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAJAAAAAAAAAA4AAAAAAAAACgAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAIAAAAAAAAAAoAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSxqMAXSUR0B5H9w2l2vCdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0B5IASIxgy/dX2UKGgGRz/wAAAAAAAAaAdLCWgIR0B5IBy3kPtldX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5H/OqvNeMdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0B5ICQ6p5u7dX2UKGgGRwAAAAAAAAAAaAdLEWgIR0B5IGih37k5dX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IIyIpH7QdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IKAQQL/kdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0B5IGNIbwSbdX2UKGgGRwAAAAAAAAAAaAdLPWgIR0B5IKsLfDUFdX2UKGgGRz/wAAAAAAAAaAdLLWgIR0B5IJpPAO8TdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5IHyI55qudX2UKGgGRz/wAAAAAAAAaAdLGWgIR0B5IMSsbNr1dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5INfWtlqbdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0B5IOz6ab4KdX2UKGgGRz/wAAAAAAAAaAdLIGgIR0B5IMywfQrudX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IRtCRfWudX2UKGgGRz/wAAAAAAAAaAdLFWgIR0B5IQvYe1a4dX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IUHxBmf5dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0B5IU0xdpqRdX2UKGgGRwAAAAAAAAAAaAdLHmgIR0B5IWyE+PildX2UKGgGRwAAAAAAAAAAaAdLQ2gIR0B5IX/0dzXCdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5IWUPhAGCdX2UKGgGRz/wAAAAAAAAaAdLP2gIR0B5Ia65Gz8hdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5IdKHwgDBdX2UKGgGRwAAAAAAAAAAaAdLMGgIR0B5IdNEgGKRdX2UKGgGRz/wAAAAAAAAaAdLImgIR0B5IbJMg2ZRdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5IdSKm8/VdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5IeiTMaCMdX2UKGgGRz/wAAAAAAAAaAdLSmgIR0B5IhqN6w+udX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5IiP/7zkIdX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IjAk9lmOdX2UKGgGRz/wAAAAAAAAaAdLJWgIR0B5Ijx7RfF8dX2UKGgGRz/wAAAAAAAAaAdLGmgIR0B5IhWQwK0EdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5ImlZX+2mdX2UKGgGRz/wAAAAAAAAaAdLRGgIR0B5IjHZK3/hdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0B5IjsyBTXKdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0B5Iok9lmOEdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5InZnL7oCdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0B5IoKCxu89dX2UKGgGRwAAAAAAAAAAaAdLD2gIR0B5InrkbPyDdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5IsNOM2m6dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5IrW3BpHqdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5IpWuHN5ddX2UKGgGRz/wAAAAAAAAaAdLTWgIR0B5Is4gieNDdX2UKGgGRz/wAAAAAAAAaAdLHGgIR0B5It7eEZivdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0B5IwvPC2tudX2UKGgGRz/wAAAAAAAAaAdLRGgIR0B5ItdxAB1cdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0B5Is7MgU1ydX2UKGgGRz/wAAAAAAAAaAdLF2gIR0B5IyM3qAz6dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0B5Iyhxo7FLdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0B5I0fozN2UdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0B5I1QCSzPbdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5I1kjHGS7dX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5I5I6Kcd6dX2UKGgGRz/wAAAAAAAAaAdLJ2gIR0B5I4zbeuV5dX2UKGgGRz/wAAAAAAAAaAdLFGgIR0B5I8zi0fHQdX2UKGgGRz/wAAAAAAAAaAdLK2gIR0B5I/HQyAQQdX2UKGgGRwAAAAAAAAAAaAdLLmgIR0B5I+2BreqJdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0B5I/bL2YfGdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0B5I9YzSCvpdX2UKGgGRz/wAAAAAAAAaAdLLmgIR0B5I82wV0tAdX2UKGgGRz/wAAAAAAAAaAdLKmgIR0B5JCgHu7YkdX2UKGgGRz/wAAAAAAAAaAdLMmgIR0B5JCm0mdAgdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0B5JCVPepGXdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JHXXiBGydX2UKGgGRz/wAAAAAAAAaAdLFWgIR0B5JHyI55qudX2UKGgGRz/wAAAAAAAAaAdLR2gIR0B5JFvOyE+QdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0B5JIj5bhWHdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0B5JMMjNY8udX2UKGgGRz/wAAAAAAAAaAdLOGgIR0B5JMtUXHindX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JOATZg5SdX2UKGgGRz/wAAAAAAAAaAdLImgIR0B5JQ86mwaBdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0B5JQePq9oOdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0B5JSylenhsdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5JRpaiblSdX2UKGgGRz/wAAAAAAAAaAdLQWgIR0B5JQ8bJfY0dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0B5JURtgrpadX2UKGgGRwAAAAAAAAAAaAdLXGgIR0B5JZWXC0ngdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0B5JWVjZteldX2UKGgGRz/wAAAAAAAAaAdLCWgIR0B5JdQAMlTndX2UKGgGRz/wAAAAAAAAaAdLKGgIR0B5Jd2vB7/odX2UKGgGRz/wAAAAAAAAaAdLUGgIR0B5JezzErGzdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0B5Jc5QxesxdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0B5Jg2BJ7LMdX2UKGgGRz/wAAAAAAAAaAdLMWgIR0B5JjBguyu7dX2UKGgGRz/wAAAAAAAAaAdLLGgIR0B5JjyxzJZGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5Jjl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLJWgIR0B5Jg2OyVv/dX2UKGgGRwAAAAAAAAAAaAdLC2gIR0B5JlekYXO4dX2UKGgGRwAAAAAAAAAAaAdLRmgIR0B5Jjl8w5/9dX2UKGgGRz/wAAAAAAAAaAdLN2gIR0B5Jn8pCrtFdX2UKGgGRz/wAAAAAAAAaAdLY2gIR0B5JnZSNwR5dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0B5JqYE4ecQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5Jp2yLQ5WdX2UKGgGRz/wAAAAAAAAaAdLUWgIR0B5JrsZ5zHTdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0B5J0R+SbH7dX2UKGgGRwAAAAAAAAAAaAdLHmgIR0B5J0IcBEKFdX2UKGgGRz/wAAAAAAAAaAdLTmgIR0B5J2PIXCTEdX2UKGgGRz/wAAAAAAAAaAdLKWgIR0B5J2e5Fw1jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "16", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (388 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 0.8, "std_reward": 0.4, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-09T16:36:00.675976"}
|